
Local Search

Local Search:

Maintain a complete assignment of a value to each variable.

Start with random assignment or a best guess.

Repeat:
▶ Select a variable to change
▶ Select a new value for that variable

Until a satisfying assignment is found
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Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Function to be minimized: the number of conflicts.
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Iterative Best Improvement (2 stage) “greedy descent”

Start with random assignment (for each variable, select a
value for that variable at random)

Repeat:
▶ Select a variable that participates in the most conflicts
▶ Select a different value for that variable

Until a satisfying assignment is found

All selections are random and uniform.
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Any Conflict

Start with random assignment (for each variable, select a
value for that variable at random)

Repeat:
▶ Select a variable at random that participates in any conflict
▶ Select a different value for that variable

Until a satisfying assignment is found

All selections are random and uniform.
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Comparing Stochastic Algorithms

Which of the preceding algorithms work better?
How would we tell if one is better than the other?

How can you compare three algorithms when
▶ one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
▶ one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
▶ one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.
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Runtime Distribution

x-axis runtime (or number of steps)

y-axis the proportion (or number) of runs that are solved within that
runtime
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Runtime Distribution

Run the same algorithm on the same
instance for a number of trials (e.g., 100 or
1000)

Sort the trials according to the run time.

Plot:

x-axis run time of the trial
y-axis index of the trial

This produces a cumulative distribution

Do this this a few times to gauge the
variability (take a statistics course!)

Sometimes use number of steps instead of
run time (because computers measure small
run times inaccurately) . . . not good
measure to compare algorithms if steps take
different times
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Randomized Algorithms

A probabilistic mix of greedy and any-conflict — e.g., 70% of
time pick best variable, otherwise pick any variable in a
conflict – works better than either alone.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.3 8 / 27



Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent: pick the best variable and/or value

Random walk: picking variables and values at random

Random restart: reassigning values to all variables

Some of these might be more complex than the others.
A probabilistic mix might work better.
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Greedy Descent Variants

To select a variable to change and a new value for it:

Most Improving Step: Find a variable-value pair that
minimizes the number of conflicts.
What data structures are required?
Two Stage Choice: Select a variable that participates in the
most conflicts.
Select a value that minimizes the number of conflicts.
What data structures are required?
Any Conflict: Select a variable that appears in any conflict.
Select a value at random.
What data structures are required?
Select a variable at random.
Select a value that minimizes the number of conflicts.
What data structures are required?
Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
What data structures are required?
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Steps

One measure of an assignment is number of conflicts

It is possible to weight some conflicts higher than others.

Why would we?
Because some are easier to solve than other. E.g., in
scheduling exams....

If A is a total assignment, define h(A) to be a measure of the
difficulty of solving problem from A.

h(A) = 0 then A a solution; lower h is better
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Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it isn’t worse, accept it.

If it is worse, accept it probabilistically depending on a
temperature parameter, T :
▶ With current assignment A and proposed assignment A′ accept

A′ with probability e(h(A)−h(A′))/T

Note: h(A)− h(A′) is negative if A′ is worse.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14

Temperature can be reduced.
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Random Restart

A random restart involves reassigning all variables to values at
random.

allows for exploration of a different part of the search space.

Each run is independent of the others, so probabilities can be
derived analytically.
Suppose each run has a probability of p of finding a solution.
We do n runs or until a solution is found.
The probability of n runs failing to find a solution is (1− p)n

The probability of finding a solution in n-runs is 1− (1− p)n

n p = 0.1 p = 0.3 p = 0.5 p = 0.8

5 0.410 0.832 0.969 0.9997
10 0.65 0.971 0.9990 0.9999998
20 0.878 0.9992 0.9999991 0.999999999999990
50 0.995 0.99999998 0.9999999999999991 1.0
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Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more efficiently than as a list of
complete assignments.

It can be expensive if k is large.
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Ordered and Continuous Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent movies each
each variable downhill; proportional to the gradient of the
heuristic function in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networks do gradient descent with many parameters
(variables) to minimize an error on a dataset. Some large
language models have over 1012 parameters.
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Gradient Descent

0 1 2 3 4 5
x

10

0

10

20

30

40

50

y

f(x)
tangent at 1
tangent at 4.5
gradient descent steps

y = 2 ∗ (x − 1.3) ∗ (x − 1.5) ∗ (x − 2) ∗ (x − 4.5) + 15
Step size is 0.05 and gradient descent starts at x = 4.5.
What if it starts at x = 5.5? (Hint: the derivative is more than 4
times larger). What if it starts at x = 1.5?
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Problems with Greedy Descent

a local optimum that is
not a global optimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

a saddle is a flat area
where steps need to
change direction
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; small step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?
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Parallel Search

A total assignment is called an individual.

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.3 21 / 27



Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

The value of k lets us limit space and parallelism.

Problem: lack of diversity of individuals.
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Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.
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Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the offspring.

For each generation:
▶ Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
▶ For each pair, perform a crossover: form two offspring each

taking different parts of their parents.
▶ Mutate some values.

Stop when a solution is found.
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Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.
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Optimization

An optimization problem is given

a set of variables, each with an associated domain

an objective function that maps total assignments to real
numbers, and

an optimality criterion, which is typically to find a total
assignment that minimizes (or maximizes) the objective
function.
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Constraint optimization problem

In a constraint optimization problem the objective function is
factored into a sum of soft constraints

A soft constraint is a function from scope of constraint into
non-negative reals (the cost)

The aim is to find a total assignment that minimizes the sum
of the values of the soft constraints.

Can use systematic search (e.g., A∗ or branch-and-bound
search)

Arc consistency can be used to prune dominated values

Can use local search

Problem: we can’t tell if a value is a global minimum unless
we do systematic search
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