
Learning Objectives

At the end of the class you should be able to:

show how constraint satisfaction problems can be solved with
generate-and-test

show how constraint satisfaction problems can be solved with
search

explain and trace arc-consistency of a constraint graph

show how domain splitting can solve constraint problems

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 1 / 21



Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C )× dom(D)× dom(E )

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {⟨1, 1, 1, 1, 1⟩ , ⟨1, 1, 1, 1, 2⟩ , ..., ⟨4, 4, 4, 4, 4⟩}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 2 / 21



Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C )× dom(D)× dom(E )

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {⟨1, 1, 1, 1, 1⟩ , ⟨1, 1, 1, 1, 2⟩ , ..., ⟨4, 4, 4, 4, 4⟩}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 2 / 21



Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C )× dom(D)× dom(E )

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {⟨1, 1, 1, 1, 1⟩ , ⟨1, 1, 1, 1, 2⟩ , ..., ⟨4, 4, 4, 4, 4⟩}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 2 / 21



Generate-and-Test Algorithm

Generate the assignment space
D = dom(V1)× dom(V2)× . . .× dom(Vn). Test each
assignment with the constraints.

Example:

D = dom(A)× dom(B)× dom(C )× dom(D)× dom(E )

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
= {⟨1, 1, 1, 1, 1⟩ , ⟨1, 1, 1, 1, 2⟩ , ..., ⟨4, 4, 4, 4, 4⟩}.

Can be implemented with n nested for-loops.

for A in dom_A:

for B in dom_B:

...

if constraints are satisfied: return (A,B,...)

How many assignments need to be tested for n variables each
with domain size d?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 2 / 21



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 3 / 21



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 3 / 21



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 3 / 21



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .

Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 3 / 21



Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Variables A,B,C , domains {1, 2, 3, 4},
constraints A < B,B < C .
Assignment A = 1 ∧ B = 1 is inconsistent with constraint A < B
regardless of the value of the other variables.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 3 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is

the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a

total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints that can be evaluated.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

The search space depends on which variable is selected to be
assigned for each node. There are no cycles or multiple paths
to a node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 4 / 21



Simple Example 1

Variables: A,B,C

Domains: {1, 2, 3, 4}
Constraints A < B, B < C

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 5 / 21



Simple Example 1

Variables: A,B,C

Domains: {1, 2, 3, 4}
Constraints A < B, B < C

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 5 / 21



Simple Example 2

Variables: A,B,C ,D

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 6 / 21



Simple Example 3

Variables: A,B,C ,D,E

Domains: {1, 2, 3, 4}
Constraints A < B, B < C ,C < D,D < E

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 7 / 21



Example: scheduling activities

Variables: A, B, C , D, E that represent the starting times of
various activities.

Domains: dom(A) = {1, 2, 3, 4}, dom(B) = {1, 2, 3, 4},
dom(C ) = {1, 2, 3, 4}, dom(D) = {1, 2, 3, 4},
dom(E ) = {1, 2, 3, 4}
Constraints:

(B ̸= 3) ∧ (C ̸= 2) ∧ (A ̸= B) ∧ (B ̸= C ) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C ) ∧ (E < D) ∧ (B ̸= D).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 8 / 21



Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the variable is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?

dom(B) = {1, 2, 3, 4} isn’t domain consistent as B = 3
violates the constraint B ̸= 3.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 9 / 21



Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the variable is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?
dom(B) = {1, 2, 3, 4} isn’t domain consistent as B = 3
violates the constraint B ̸= 3.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 9 / 21



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y )

〉
E.g., ⟨X ,X < Y ⟩, ⟨Y ,X < Y ⟩
⟨X ,X + Y = Z ⟩, ⟨Y ,X + Y = Z ⟩, ⟨Z ,X + Y = Z ⟩

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 10 / 21



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y )

〉
E.g., ⟨X ,X < Y ⟩, ⟨Y ,X < Y ⟩
⟨X ,X + Y = Z ⟩, ⟨Y ,X + Y = Z ⟩, ⟨Z ,X + Y = Z ⟩

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 10 / 21



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y )

〉
E.g., ⟨X ,X < Y ⟩, ⟨Y ,X < Y ⟩
⟨X ,X + Y = Z ⟩, ⟨Y ,X + Y = Z ⟩, ⟨Z ,X + Y = Z ⟩

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 10 / 21



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .

An arc is written as
〈
X , r(X ,Y )

〉
E.g., ⟨X ,X < Y ⟩, ⟨Y ,X < Y ⟩
⟨X ,X + Y = Z ⟩, ⟨Y ,X + Y = Z ⟩, ⟨Z ,X + Y = Z ⟩

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 10 / 21



Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
An arc is written as

〈
X , r(X ,Y )

〉
E.g., ⟨X ,X < Y ⟩, ⟨Y ,X < Y ⟩
⟨X ,X + Y = Z ⟩, ⟨Y ,X + Y = Z ⟩, ⟨Z ,X + Y = Z ⟩

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 10 / 21



Example Constraint Network

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 11 / 21



Arc Consistency

An arc
〈
X , r(X ,Y )

〉
is arc consistent if, for each value

x ∈ dom(X ), there is some value y ∈ dom(Y ) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y )

〉
is not arc consistent?

All values of X in dom(X ) for which there is no corresponding
value in dom(Y ) can be deleted from dom(X ) to make the
arc

〈
X , r(X ,Y )

〉
consistent.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 12 / 21



Arc Consistency

An arc
〈
X , r(X ,Y )

〉
is arc consistent if, for each value

x ∈ dom(X ), there is some value y ∈ dom(Y ) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y )

〉
is not arc consistent?

All values of X in dom(X ) for which there is no corresponding
value in dom(Y ) can be deleted from dom(X ) to make the
arc

〈
X , r(X ,Y )

〉
consistent.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 12 / 21



Arc Consistency

An arc
〈
X , r(X ,Y )

〉
is arc consistent if, for each value

x ∈ dom(X ), there is some value y ∈ dom(Y ) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What if arc
〈
X , r(X ,Y )

〉
is not arc consistent?

All values of X in dom(X ) for which there is no corresponding
value in dom(Y ) can be deleted from dom(X ) to make the
arc

〈
X , r(X ,Y )

〉
consistent.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 12 / 21



Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

When an arc has been made arc consistent, does it ever need
to be checked again?

An arc
〈
X , r(X ,Y )

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 13 / 21



Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

When an arc has been made arc consistent, does it ever need
to be checked again?
An arc

〈
X , r(X ,Y )

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 13 / 21



Generalized Arc Consistency

for each variable X :
DX := dom(X )

to do := {⟨X , c⟩ | c ∈ C and X ∈ scope(c)}
while to do is not empty:

select and remove path ⟨X , c⟩ from to do
suppose scope of c is {X ,Y1, . . . ,Yk}
NDX := {x | x ∈ DX and

exists y1 ∈ DY1 ,. . . , yk ∈ DYk

s.th. c(X = x ,Y1 = y1, . . . ,Yk = yk) = true }
if NDX ̸= DX :

to do := to do ∪ {⟨Z , c ′⟩ | X ∈ scope(c ′),
c ′ is not c, Z ∈ scope(c ′) \ {X}}

DX := NDX

return {DX | X is a variable}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 14 / 21



Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒

no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 15 / 21



Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒

no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 15 / 21



Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒

unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 15 / 21



Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒ unique solution

Some domains have more than one value =⇒

there may or
may not be a solution

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 15 / 21



Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

One domain is empty =⇒ no solution

Each domain has a single value =⇒ unique solution

Some domains have more than one value =⇒ there may or
may not be a solution

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 15 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time

O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most

d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time

O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?

Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Complexity of Arc Consistency

Consider binary constraints

Each variable domain is of size d

There are e arcs.

Checking an arc takes time O(d2)
⟨X , c(X ,Y )⟩ for each value for X , check each value for Y

Each constraint needs to be checked at most d times.
⟨X , c(X ,Y )⟩ rechecked when a value for Y is removed.

Thus the algorithm GAC takes time O(ed3).

Solving a CSP is an NP-complete problem where n the number of
variables

Give a solution it can be checked in polynomial time

But it can be made arc consistent in polynomial time. How?
Making the network arc consistent does not solve the
problem. We need to search for a solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 16 / 21



Finding solutions with AC and domain splitting

To solve a CSP:

Simplify with arc-consistency

If a domain is empty, return no solution

If all domains have size 1, return solution found

Else split a domain, and recursively solve each half.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 17 / 21



Finding one solutions with AC and domain splitting

Solve one(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return False
else if all domains have one element:

return solution of that element for each variable
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return Solve one(CSP, domains with dom(X ) = D1) or
Solve one(CSP, domains with dom(X ) = D2)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 18 / 21



Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return

{}

else if all domains have one element:
return

{solution of that element for each variable}

else:
select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X ) = D1) ∪
Solve all(CSP, domains with dom(X ) = D2)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 19 / 21



Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return

{solution of that element for each variable}

else:
select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X ) = D1) ∪
Solve all(CSP, domains with dom(X ) = D2)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 19 / 21



Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return {solution of that element for each variable}
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return

Solve all(CSP, domains with dom(X ) = D1) ∪
Solve all(CSP, domains with dom(X ) = D2)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 19 / 21



Finding set of all solutions with AC and domain splitting

Solve all(CSP, domains) :
simplify CSP with arc-consistency
if one domain is empty:

return {}
else if all domains have one element:

return {solution of that element for each variable}
else:

select variable X with domain D and |D| > 1
partition D into D1 and D2

return Solve all(CSP, domains with dom(X ) = D1) ∪
Solve all(CSP, domains with dom(X ) = D2)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 19 / 21



AC and domain splitting as search

Domain splitting leads to search space

Nodes:

CSP with arc-consistent domains

Neighbors

of CSP:
if all domains are non-empty:
select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
▶ make AC (CSP | dom(X ) = D1)
▶ make AC (CSP | dom(X ) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 20 / 21



AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors

of CSP:
if all domains are non-empty:
select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
▶ make AC (CSP | dom(X ) = D1)
▶ make AC (CSP | dom(X ) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 20 / 21



AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
▶ make AC (CSP | dom(X ) = D1)
▶ make AC (CSP | dom(X ) = D2)

Goal:

all domains have size 1

Start node:

make AC (CSP)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 20 / 21



AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
▶ make AC (CSP | dom(X ) = D1)
▶ make AC (CSP | dom(X ) = D2)

Goal: all domains have size 1

Start node:

make AC (CSP)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 20 / 21



AC and domain splitting as search

Domain splitting leads to search space

Nodes: CSP with arc-consistent domains

Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and |D| > 1
partition D into D1 and D2

neighbors are
▶ make AC (CSP | dom(X ) = D1)
▶ make AC (CSP | dom(X ) = D2)

Goal: all domains have size 1

Start node: make AC (CSP)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 20 / 21



© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 4.2 21 / 21


