Learning Objectives

At the end of the class you should be able to:

- show how constraint satisfaction problems can be solved with generate-and-test
- show how constraint satisfaction problems can be solved with search
- explain and trace arc-consistency of a constraint graph
- show how domain splitting can solve constraint problems

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D}=\operatorname{dom}\left(V_{1}\right) \times \operatorname{dom}\left(V_{2}\right) \times \ldots \times \operatorname{dom}\left(V_{n}\right)$. Test each assignment with the constraints.
- Example:

$$
\begin{aligned}
\mathbf{D} & =\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E) \\
& =\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1 \\
& =\{\langle 1,1,1,1,1\rangle,\langle 1,1,1,1,2\rangle, \ldots,\langle 4,4,4,4,4\rangle\} .
\end{aligned}
$$

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D}=\operatorname{dom}\left(V_{1}\right) \times \operatorname{dom}\left(V_{2}\right) \times \ldots \times \operatorname{dom}\left(V_{n}\right)$. Test each assignment with the constraints.
- Example:

$$
\begin{aligned}
\mathbf{D} & =\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E) \\
& =\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1 \\
& =\{\langle 1,1,1,1,1\rangle,\langle 1,1,1,1,2\rangle, \ldots,\langle 4,4,4,4,4\rangle\} .
\end{aligned}
$$

- Can be implemented with n nested for-loops.

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D}=\operatorname{dom}\left(V_{1}\right) \times \operatorname{dom}\left(V_{2}\right) \times \ldots \times \operatorname{dom}\left(V_{n}\right)$. Test each assignment with the constraints.
- Example:

$$
\begin{aligned}
\mathbf{D} & =\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E) \\
& =\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1 \\
& =\{\langle 1,1,1,1,1\rangle,\langle 1,1,1,1,2\rangle, \ldots,\langle 4,4,4,4,4\rangle\} .
\end{aligned}
$$

- Can be implemented with n nested for-loops.

$$
\begin{aligned}
& \text { for } A \text { in dom_A: } \\
& \text { for } B \text { in dom_B: }
\end{aligned}
$$

if constraints are satisfied: return (A,B,...)

Generate-and-Test Algorithm

- Generate the assignment space $\mathbf{D}=\operatorname{dom}\left(V_{1}\right) \times \operatorname{dom}\left(V_{2}\right) \times \ldots \times \operatorname{dom}\left(V_{n}\right)$. Test each assignment with the constraints.
- Example:

$$
\begin{aligned}
\mathbf{D} & =\operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E) \\
& =\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1,2,3,4\} \times\{1 \\
& =\{\langle 1,1,1,1,1\rangle,\langle 1,1,1,1,2\rangle, \ldots,\langle 4,4,4,4,4\rangle\} .
\end{aligned}
$$

- Can be implemented with n nested for-loops.

$$
\begin{aligned}
& \text { for } A \text { in dom_A: } \\
& \text { for } B \text { in dom_B: }
\end{aligned}
$$

if constraints are satisfied: return (A,B,...)

- How many assignments need to be tested for n variables each with domain size d ?

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound
- any partial assignment that doesn't satisfy the constraint can be pruned.

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound
- any partial assignment that doesn't satisfy the constraint can be pruned.
Example Variables A, B, C, domains $\{1,2,3,4\}$, constraints $A<B, B<C$.

Backtracking Algorithms

- Systematically explore D by instantiating the variables one at a time
- evaluate each constraint predicate as soon as all its variables are bound
- any partial assignment that doesn't satisfy the constraint can be pruned.
Example Variables A, B, C, domains $\{1,2,3,4\}$, constraints $A<B, B<C$.
Assignment $A=1 \wedge B=1$ is inconsistent with constraint $A<B$ regardless of the value of the other variables.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N.
For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N.
For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.
- The start node is

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N.
For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.
- The start node is the empty assignment.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N.
For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.
- The start node is the empty assignment.
- A goal node is a

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N. For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.
- The start node is the empty assignment.
- A goal node is a total assignment that satisfies the constraints.

CSP as Graph Searching

A CSP can be solved by graph-searching:

- A node is an assignment values to some of the variables.
- Suppose node N is the assignment $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$. Select a variable Y that isn't assigned in N.
For each value $y_{i} \in \operatorname{dom}(Y)$
$X_{1}=v_{1}, \ldots, X_{k}=v_{k}, Y=y_{i}$ is a neighbour if it is consistent with the constraints that can be evaluated.
- The start node is the empty assignment.
- A goal node is a total assignment that satisfies the constraints.
- The search space depends on which variable is selected to be assigned for each node. There are no cycles or multiple paths to a node.

Simple Example 1

- Variables: A, B, C
- Domains: $\{1,2,3,4\}$
- Constraints $A<B, B<C$

Simple Example 1

- Variables: A, B, C
- Domains: $\{1,2,3,4\}$
- Constraints $A<B, B<C$

Simple Example 2

- Variables: A, B, C, D
- Domains: $\{1,2,3,4\}$
- Constraints $A<B, B<C, C<D$

Simple Example 3

- Variables: A, B, C, D, E
- Domains: $\{1,2,3,4\}$
- Constraints $A<B, B<C, C<D, D<E$

Example: scheduling activities

- Variables: A, B, C, D, E that represent the starting times of various activities.
- Domains: $\operatorname{dom}(A)=\{1,2,3,4\}, \operatorname{dom}(B)=\{1,2,3,4\}$, $\operatorname{dom}(C)=\{1,2,3,4\}, \operatorname{dom}(D)=\{1,2,3,4\}$, $\operatorname{dom}(E)=\{1,2,3,4\}$
- Constraints:

$$
\left.\begin{array}{rl}
(B \neq 3) & \wedge(C \neq 2) \\
\quad(C<D) & \wedge(A \neq B) \wedge(B \neq C) \wedge \\
& (E<C)
\end{array}\right)(E<D) \wedge(B \neq D) .
$$

Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the variable is ruled impossible by any of the constraints.
- Example: Is the scheduling example domain consistent?

Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the variable is ruled impossible by any of the constraints.
- Example: Is the scheduling example domain consistent? $\operatorname{dom}(B)=\{1,2,3,4\}$ isn't domain consistent as $B=3$ violates the constraint $B \neq 3$.

Constraint Network

- There is a oval-shaped node for each variable.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint.
- There is a domain of values associated with each variable node.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint.
- There is a domain of values associated with each variable node.
- There is an arc from variable X to each constraint that involves X.

Constraint Network

- There is a oval-shaped node for each variable.
- There is a rectangular node for each constraint.
- There is a domain of values associated with each variable node.
- There is an arc from variable X to each constraint that involves X.
An arc is written as $\langle X, r(X, \bar{Y})\rangle$
E.g., $\langle X, X<Y\rangle,\langle Y, X<Y\rangle$
$\langle X, X+Y=Z\rangle,\langle Y, X+Y=Z\rangle,\langle Z, X+Y=Z\rangle$

Example Constraint Network

Arc Consistency

- An arc $\langle X, r(X, \bar{Y})\rangle$ is arc consistent if, for each value $x \in \operatorname{dom}(X)$, there is some value $\bar{y} \in \operatorname{dom}(\bar{Y})$ such that $r(x, \bar{y})$ is satisfied.

Arc Consistency

- An arc $\langle X, r(X, \bar{Y})\rangle$ is arc consistent if, for each value $x \in \operatorname{dom}(X)$, there is some value $\bar{y} \in \operatorname{dom}(\bar{Y})$ such that $r(x, \bar{y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- What if arc $\langle X, r(X, \bar{Y})\rangle$ is not arc consistent?

Arc Consistency

- An arc $\langle X, r(X, \bar{Y})\rangle$ is arc consistent if, for each value $x \in \operatorname{dom}(X)$, there is some value $\bar{y} \in \operatorname{dom}(\bar{Y})$ such that $r(x, \bar{y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- What if arc $\langle X, r(X, \bar{Y})\rangle$ is not arc consistent?

All values of X in $\operatorname{dom}(X)$ for which there is no corresponding value in $\operatorname{dom}(\bar{Y})$ can be deleted from $\operatorname{dom}(X)$ to make the $\operatorname{arc}\langle X, r(X, \bar{Y})\rangle$ consistent.

Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?

Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- When an arc has been made arc consistent, does it ever need to be checked again?
An arc $\langle X, r(X, \bar{Y})\rangle$ needs to be revisited if the domain of one of the Y 's is reduced.

Generalized Arc Consistency

for each variable X :

$$
D_{X}:=\operatorname{dom}(X)
$$

to_do $:=\{\langle X, c\rangle \mid c \in C$ and $X \in \operatorname{scope}(c)\}$
while to do is not empty:
select and remove path $\langle X, c\rangle$ from to_do
suppose scope of c is $\left\{X, Y_{1}, \ldots, Y_{k}\right\}$
$N D_{X}:=\left\{x \mid x \in D_{X}\right.$ and
exists $y_{1} \in D_{Y_{1}}, \ldots, y_{k} \in D_{Y_{k}}$
s.th. $c\left(X=x, Y_{1}=y_{1}, \ldots, Y_{k}=y_{k}\right)=$ true $\}$
if $N D_{X} \neq D_{X}$:

$$
\text { to_do }:=\text { to_do } \cup\left\{\left\langle Z, c^{\prime}\right\rangle \mid X \in \operatorname{scope}\left(c^{\prime}\right),\right.
$$

$$
\left.c^{\prime} \text { is not } c, Z \in \operatorname{scope}\left(c^{\prime}\right) \backslash\{X\}\right\}
$$

$$
D_{X}:=N D_{X}
$$

return $\left\{D_{X} \mid X\right.$ is a variable $\}$

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

- One domain is empty \Longrightarrow
- Each domain has a single value \Longrightarrow
- Some domains have more than one value \Longrightarrow

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

- One domain is empty \Longrightarrow no solution
- Each domain has a single value \Longrightarrow
- Some domains have more than one value \Longrightarrow

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

- One domain is empty \Longrightarrow no solution
- Each domain has a single value \Longrightarrow unique solution
- Some domains have more than one value \Longrightarrow

Arc Consistency Algorithm

Three possible outcomes when all arcs are made arc consistent:

- One domain is empty \Longrightarrow no solution
- Each domain has a single value \Longrightarrow unique solution
- Some domains have more than one value \Longrightarrow there may or may not be a solution

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time $O\left(d^{2}\right)$
$\langle X, c(X, Y)\rangle$ for each value for X, check each value for Y
- Each constraint needs to be checked at most

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time $O\left(d^{2}\right)$
$\langle X, c(X, Y)\rangle$ for each value for X, check each value for Y
- Each constraint needs to be checked at most d times. $\langle X, c(X, Y)\rangle$ rechecked when a value for Y is removed.
- Thus the algorithm GAC takes time

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time $O\left(d^{2}\right)$
$\langle X, c(X, Y)\rangle$ for each value for X, check each value for Y
- Each constraint needs to be checked at most d times. $\langle X, c(X, Y)\rangle$ rechecked when a value for Y is removed.
- Thus the algorithm GAC takes time $O\left(e d^{3}\right)$.

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time $O\left(d^{2}\right)$ $\langle X, c(X, Y)\rangle$ for each value for X, check each value for Y
- Each constraint needs to be checked at most d times.
$\langle X, c(X, Y)\rangle$ rechecked when a value for Y is removed.
- Thus the algorithm GAC takes time $O\left(e d^{3}\right)$.

Solving a CSP is an NP-complete problem where n the number of variables

- Give a solution it can be checked in polynomial time
- But it can be made arc consistent in polynomial time. How?

Complexity of Arc Consistency

- Consider binary constraints
- Each variable domain is of size d
- There are e arcs.
- Checking an arc takes time $O\left(d^{2}\right)$ $\langle X, c(X, Y)\rangle$ for each value for X, check each value for Y
- Each constraint needs to be checked at most d times. $\langle X, c(X, Y)\rangle$ rechecked when a value for Y is removed.
- Thus the algorithm GAC takes time $O\left(e d^{3}\right)$.

Solving a CSP is an NP-complete problem where n the number of variables

- Give a solution it can be checked in polynomial time
- But it can be made arc consistent in polynomial time. How? Making the network arc consistent does not solve the problem. We need to search for a solution.

Finding solutions with AC and domain splitting

To solve a CSP:

- Simplify with arc-consistency
- If a domain is empty, return no solution
- If all domains have size 1 , return solution found
- Else split a domain, and recursively solve each half.

Finding one solutions with AC and domain splitting

Solve_one(CSP, domains) : simplify CSP with arc-consistency
if one domain is empty:
return False
else if all domains have one element:
return solution of that element for each variable else:
select variable X with domain D and $|D|>1$ partition D into D_{1} and D_{2} return Solve_one (CSP, domains with $\left.\operatorname{dom}(X)=D_{1}\right)$ or Solve_one (CSP, domains with $\left.\operatorname{dom}(X)=D_{2}\right)$

Finding set of all solutions with AC and domain splitting

Solve_all(CSP, domains) : simplify CSP with arc-consistency
if one domain is empty:
return
else if all domains have one element:
return
else:
select variable X with domain D and $|D|>1$ partition D into D_{1} and D_{2} return

Finding set of all solutions with AC and domain splitting

Solve_all(CSP, domains) : simplify CSP with arc-consistency
if one domain is empty: return $\}$
else if all domains have one element: return
else:
select variable X with domain D and $|D|>1$ partition D into D_{1} and D_{2} return

Finding set of all solutions with AC and domain splitting

Solve_all(CSP, domains) : simplify CSP with arc-consistency
if one domain is empty:
return $\}$
else if all domains have one element:
return \{solution of that element for each variable\}
else:
select variable X with domain D and $|D|>1$ partition D into D_{1} and D_{2} return

Finding set of all solutions with AC and domain splitting

Solve_all(CSP, domains) : simplify CSP with arc-consistency
if one domain is empty:
return $\}$
else if all domains have one element:
return \{solution of that element for each variable\}
else:
select variable X with domain D and $|D|>1$ partition D into D_{1} and D_{2} return Solve_all $\left(C S P\right.$, domains with $\left.\operatorname{dom}(X)=D_{1}\right) \cup$ Solve_all($C S P$, domains with $\left.\operatorname{dom}(X)=D_{2}\right)$

AC and domain splitting as search

Domain splitting leads to search space

- Nodes:
- Neighbors
- Goal:
- Start node:

AC and domain splitting as search

Domain splitting leads to search space

- Nodes: CSP with arc-consistent domains
- Neighbors
- Goal:
- Start node:

AC and domain splitting as search

Domain splitting leads to search space

- Nodes: CSP with arc-consistent domains
- Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and $|D|>1$
partition D into D_{1} and D_{2}
neighbors are
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{1}\right)$
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{2}\right)$
- Goal:
- Start node:

AC and domain splitting as search

Domain splitting leads to search space

- Nodes: CSP with arc-consistent domains
- Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and $|D|>1$
partition D into D_{1} and D_{2}
neighbors are
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{1}\right)$
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{2}\right)$
- Goal: all domains have size 1
- Start node:

AC and domain splitting as search

Domain splitting leads to search space

- Nodes: CSP with arc-consistent domains
- Neighbors of CSP:
if all domains are non-empty:
select variable X with domain D and $|D|>1$
partition D into D_{1} and D_{2}
neighbors are
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{1}\right)$
- make_AC(CSP $\left.\mid \operatorname{dom}(X)=D_{2}\right)$
- Goal: all domains have size 1
- Start node: make_AC(CSP)

