
Learning Objectives

At the end of the class you should be able to:

explain how cycle checking and multiple-path pruning can
improve efficiency of search algorithms

explain the complexity of cycle checking and multiple-path
pruning for different search algorithms

justify why the monotone restriction is useful for A∗ search

predict whether forward, backward, bidirectional or
island-driven search is better for a particular problem

demonstrate how dynamic programming works for a particular
problem

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 1 / 19



Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Best-first Global min h(p) No No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
A∗ Minimal f (p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 2 / 19



Cycle Pruning

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 3 / 19



Graph searching with cycle pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {⟨s⟩ : s is a start node}
while frontier is not empty:

select and remove path ⟨n0, . . . , nk⟩ from frontier
if nk ̸∈ {n0, . . . , nk−1} :

if goal(nk):
return ⟨n0, . . . , nk⟩

Frontier := Frontier ∪ {⟨n0, . . . , nk , n⟩ : ⟨nk , n⟩ ∈ A}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 4 / 19



Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in linear
time in path length.

With cycle pruning, which algorithms halt on finite graphs?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 5 / 19



Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

Lowest-cost-first search with multiple-path pruning is
Dijkstra’s algorithm, and is the same as A∗ with multiple-path
pruning and a heuristic function of 0.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 6 / 19



Graph searching with multiple-path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {⟨s⟩ : s is a start node}
expanded := {}
while frontier is not empty:

select and remove path ⟨n0, . . . , nk⟩ from frontier
if nk ̸∈ expanded :

add nk to expanded
if goal(nk):

return ⟨n0, . . . , nk⟩
Frontier := Frontier ∪ {⟨n0, . . . , nk , n⟩ : ⟨nk , n⟩ ∈ A}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 7 / 19



Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 8 / 19



Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n has a lower cost than the
first path to n?

remove all paths from the frontier that use the longer path.

change the initial segment of the paths on the frontier to use
the lower-cost path.

ensure this doesn’t happen. Make sure that the lower-cost
path to a node is expanded first.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 9 / 19



Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p′ on the
frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ has a lower cost that p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
h(n′)− h(n) ≤ cost(n′, n).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 10 / 19



Monotone Restriction

Heuristic function h satisfies the monotone restriction if
h(m)− h(n) ≤ cost(m, n) for every arc ⟨m, n⟩.
If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds a least-cost path to a goal.

This is a strengthening of the admissibility criterion.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 11 / 19



Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 12 / 19



Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 ≪ bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
▶ a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
▶ in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
▶ How much is stored in the breadth-first method, can be tuned

depending on the space available.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 13 / 19



Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m ≪ bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

Requires more knowledge than just the graph and a heuristic
function.

The subproblems can be solved using islands =⇒ hierarchy of
abstractions.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 14 / 19



Dynamic Programming

Idea: Let cost to goal(n) be the actual cost of a lowest-cost path
from node n to a goal; cost to goal(n) can be defined as

cost to goal(n)

=

{
0 if goal(n),
min⟨n,m⟩∈A(cost(⟨n,m⟩) + cost to goal(m)) otherwise.

For a finite graph, we can precompute and store this using
least-cost-first search with MPP, in the reverse graph.

This can be used locally to determine what to do from any
state.
There are two main problems:
▶ It requires enough space to store the graph.
▶ The cost to goal function needs to be recomputed for each

goal.

Implementation detail: in Python, make expanded in MPP a
dictionary, so expanded [s] returns the cost from s to goal
(cost found in search).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 15 / 19



Example graph with heuristics

Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3
J

6

4

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 16 / 19



Example graph cost-to-goal

Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3

11 711

12
9 3

0J

7

44

Value on nodes are cost to goal of arc.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 17 / 19



(Partial) dynamic programming as a source of heuristics

Suppose

there is not enough time or space to store the cost-to-goal for
all nodes

we stop the least-cost-first search early, and have expanded all
paths with cost less than c . expanded is only defined for some
states

h is any admissible heuristic function that satisfies the
montone restriction.

The heuristic function

h′(n) =

{
expanded [n] if expanded [n] is defined,
max(c , h(n)) otherwise.

is an admissible heuristic function that that satisfies the montone
restriction and (generally) improves h, as it is perfect for all values
less than c .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 18 / 19



© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 19 / 19


