Relational Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality
Relational Learning

- Often the values of properties are not meaningful values but names of individuals.
- It is the properties of these individuals and their relationship to other individuals that needs to be learned.
- Relational learning has been studied under the umbrella of “Inductive Logic Programming” as the representations are often logic programs.
What does Joe like?

<table>
<thead>
<tr>
<th>Individual</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>joe</td>
<td>likes</td>
<td>resort_14</td>
</tr>
<tr>
<td>joe</td>
<td>dislikes</td>
<td>resort_35</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>resort_14</td>
<td>type</td>
<td>resort</td>
</tr>
<tr>
<td>resort_14</td>
<td>near</td>
<td>beach_18</td>
</tr>
<tr>
<td>beach_18</td>
<td>type</td>
<td>beach</td>
</tr>
<tr>
<td>beach_18</td>
<td>covered_in</td>
<td>ws</td>
</tr>
<tr>
<td>ws</td>
<td>type</td>
<td>sand</td>
</tr>
<tr>
<td>ws</td>
<td>color</td>
<td>white</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Values of properties may be meaningless names.
Possible theory that could be learned:

\[
prop(joe, \text{likes}, R) \leftarrow \\
prop(R, \text{type}, \text{resort}) \land \\
prop(R, \text{near}, B) \land \\
prop(B, \text{type}, \text{beach}) \land \\
prop(B, \text{covered-in}, S) \land \\
prop(S, \text{type}, \text{sand}).
\]

Joe likes resorts that are near sandy beaches.
- \(A \) is a set of atoms whose definitions the agent is learning.
- \(E^+ \) is a set of ground atoms observed true: positive examples
- \(E^- \) is the set of ground atoms observed to be false: negative examples
• \(A \) is a set of atoms whose definitions the agent is learning.
• \(E^+ \) is a set of ground atoms observed true: \textit{positive examples}
• \(E^- \) is the set of ground atoms observed to be false: \textit{negative examples}
• \(B \) is a set of clauses: \textit{background knowledge}
Inductive Logic Programming: Inputs and Output

- A is a set of atoms whose definitions the agent is learning.
- E^+ is a set of ground atoms observed true: positive examples
- E^- is the set of ground atoms observed to be false: negative examples
- B is a set of clauses: background knowledge
- H is a space of possible hypotheses. H can be the set of all logic programs defining A, or more restricted set.
\begin{itemize}
 \item A is a set of atoms whose definitions the agent is learning.
 \item E^+ is a set of ground atoms observed true: \textit{positive examples}
 \item E^- is the set of ground atoms observed to be false: \textit{negative examples}
 \item B is a set of clauses: \textit{background knowledge}
 \item H is a space of possible hypotheses. H can be the set of all logic programs defining A, or more restricted set.
\end{itemize}

The aim is to find a simplest hypothesis $h \in H$ such that

\begin{align*}
 B \land h &\models E^+ \text{ and } \\
 B \land h &\not\models E^-
\end{align*}
Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2. H_2 is then more specific than H_1.
Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2. H_2 is then more specific than H_1.

Consider the logic programs:

- $a ← b$.
- $a ← b ∧ c$.
- $a ← b. a ← c$.
- a.

Which is the most general? Least general?
Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2. H_2 is then more specific than H_1.

Consider the logic programs:

- $a \leftarrow b$.
- $a \leftarrow b \land c$.
- $a \leftarrow b$. $a \leftarrow c$.
- a.

Which is the most general? Least general?

For target relation $A = \{ t(X_1, \ldots, X_n) \}$ what is the most general logic program?
Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2. H_2 is then more specific than H_1. Consider the logic programs:

- $a \leftarrow b$.
- $a \leftarrow b \land c$.
- $a \leftarrow b$. $a \leftarrow c$.
- a.

Which is the most general? Least general?

- For target relation $A = \{ t(X_1, \ldots, X_n) \}$ what is the most general logic program?
- What is the least general logic program that is consistent with E^+ and E^-?
Inductive Logic Programming: Main Approaches

Single target relation: \(A = \{ t(X_1, \ldots, X_n) \} \).
Two main approaches:

- Start with the most general hypothesis and make it more complicated to fit the data.

- Initially the logic program can be \(\mathcal{E}^+ \). Operators simplify the program, ensuring it fits the training examples.
Single target relation: \(A = \{t(X_1, \ldots, X_n)\} \).

Two main approaches:

- Start with the most general hypothesis and make it more complicated to fit the data. Most general hypothesis is

 \[t(X_1, \ldots, X_n). \]

 Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.
Single target relation: \(A = \{ t(X_1, \ldots, X_n) \} \).

Two main approaches:

- **Start with the most general hypothesis and make it more complicated to fit the data.** Most general hypothesis is

 \[
 t(X_1, \ldots, X_n).
 \]

 Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.

- **Start with a hypothesis that fits the data and keep making it simpler while still fitting the data.**
Single target relation: $A = \{ t(X_1, \ldots, X_n) \}$.

Two main approaches:

- Start with the most general hypothesis and make it more complicated to fit the data. Most general hypothesis is $t(X_1, \ldots, X_n)$.

 Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.

- Start with a hypothesis that fits the data and keep making it simpler while still fitting the data. Initially the logic program can be E^+. Operators simplify the program, ensuring it fits the training examples.
Maintain a logic program G that entails the positive examples.
Initially:

\[
\begin{align*}
G &= \{ t(X_1, \ldots, X_n) \} \\
\text{A specialization operator takes} & \ G \\
\text{and returns set} & \ S \\
\text{of clauses that} & \ \text{specializes} \\
\text{Thus} & \ G | = S \\
\text{Three primitive specialization operators:} & \\
\text{Split a clause in} & \ G \\
\text{on condition} & \ c \\
\text{Clause} & \ a \leftarrow b \ \text{in} \ G \\
\text{is replaced by two clauses:} & \ a \leftarrow b \land c \\
\text{and} & \ a \leftarrow b \land \neg c \\
\text{Split clause} & \ a \leftarrow b \\
\text{on variable} & \ X \\
\text{producing:} & \\
\text{where the} & \ t_i \\
\text{are terms.} &
\end{align*}
\]
Maintain a logic program G that entails the positive examples. Initially:

$$G = \{ t(X_1, \ldots, X_n) \leftarrow \}$$

A specialization operator takes G and returns set S of clauses that specializes G. Thus $G \models S$.
Inductive Logic Programming: General to Specific Search

Maintain a logic program G that entails the positive examples. Initially:

$$G = \{ t(X_1, \ldots, X_n) \leftarrow \}$$

A specialization operator takes G and returns set S of clauses that specializes G. Thus $G \models S$.

Three primitive specialization operators:

- Split a clause in G on condition c. Clause $a \leftarrow b$ in G is replaced by two clauses: $a \leftarrow b \land c$ and $a \leftarrow b \land \neg c$.
Inductive Logic Programming: General to Specific Search

Maintain a logic program G that entails the positive examples. Initially:

$$G = \{ t(X_1, \ldots, X_n) \leftarrow \}$$

A specialization operator takes G and returns set S of clauses that specializes G. Thus $G \models S$.

Three primitive specialization operators:

- Split a clause in G on condition c. Clause $a \leftarrow b$ in G is replaced by two clauses: $a \leftarrow b \land c$ and $a \leftarrow b \land \neg c$.

- Split clause $a \leftarrow b$ on variable X, producing:

 $$a \leftarrow b \land X = t_1.$$

 $$\ldots$$

 $$a \leftarrow b \land X = t_k.$$

 where the t_i are terms.
Maintain a logic program G that entails the positive examples. Initially:

$$G = \{ t(X_1, \ldots, X_n) \leftarrow \}$$

A specialization operator takes G and returns set S of clauses that specializes G. Thus $G \models S$.

Three primitive specialization operators:

- Split a clause in G on condition c. Clause $a \leftarrow b$ in G is replaced by two clauses: $a \leftarrow b \land c$ and $a \leftarrow b \land \neg c$.
- Split clause $a \leftarrow b$ on variable X, producing:
 $$a \leftarrow b \land X = t_1.
 \ldots
 a \leftarrow b \land X = t_k.$$
 where the t_i are terms.
- Remove any clause not necessary to prove the positive examples.
1: procedure $TDInductiveLogicProgram(t, B, E^+, E^-, R)$
2: \hspace{1em} t: an atom whose definition is to be learned
3: \hspace{1em} B: background knowledge is a logic program
4: \hspace{1em} E^+: positive examples
5: \hspace{1em} E^-: negative examples
6: \hspace{1em} R: set of specialization operators
7: **Output**: logic program that classifies E^+ positively and E^- negatively or \perp if no program can be found
1: **procedure** \(TDInductiveLogicProgram(t, B, E^+, E^-, R)\)
2: \(t\): an atom whose definition is to be learned
3: \(B\): background knowledge is a logic program
4: \(E^+\): positive examples
5: \(E^-\): negative examples
6: \(R\): set of specialization operators
7: **Output**: logic program that classifies \(E^+\) positively and \(E^-\) negatively or \(\perp\) if no program can be found
8: \(H \leftarrow \{t(X_1, \ldots, X_n) \leftarrow\}\)
9: **while** there is \(e \in E^-\) such that \(B \cup H \models e\) **do**
10: **if** there is \(r \in R\) such that \(B \cup r(H) \models E^+\) **then**
11: Choose \(r \in R\) such that \(B \cup r(H) \models E^+\)
12: \(H \leftarrow r(H)\)
13: **else**
14: return \(\perp\)
15: return \(H\)