
Knowledge Sharing

A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:

I What sorts of individuals are being modeled
I The vocabulary for specifying individuals, relations and

properties
I The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 1 1 / 20



Mapping from a conceptualization to a symbol

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 2 2 / 20



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

I a symbol defined by an ontology means the same thing across
web sites that obey the ontology.

I if someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

I Separately developed ontologies can have mappings between
them published.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 3 3 / 20



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 4 4 / 20



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 5 4 / 20



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 6 4 / 20



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 7 4 / 20



Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
〈tag . . . /〉 or
〈tag . . . 〉 . . . 〈/tag〉.
URI a Uniform Resource Identifier is a name of an individual
(resource). This name can be shared. Often in the form of a
URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Doesn’t
define a syntax).

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 8 5 / 20



Main Components of an Ontology

Individuals the things / objects in the world (not usually
specified as part of the ontology)

Classes sets of individuals

Properties between individuals and their values

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 9 6 / 20



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

The UNA is not an assumption we can universally make:
“The Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 10 7 / 20



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 11 8 / 20



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 12 9 / 20



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 13 9 / 20



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 14 9 / 20



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.

(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 15 10 / 20



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 16 10 / 20



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 17 10 / 20



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 18 11 / 20



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 19 11 / 20



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 20 11 / 20



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 21 12 / 20



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j 6= k implies Ij 6= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 22 13 / 20



Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if

I they both adhere to an ontology
I these are the same ontology or there is a mapping between

them.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 23 14 / 20



Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberOfunits))

FunctionalObjectProperty(:numberOfunits)

ObjectPropertyDomain(:numberOfunits :ResidentialBuilding)

ObjectPropertyRange(:numberOfunits

ObjectOneOf(:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))

EquivalentClasses(:ApartmentBuilding

ObjectIntersectionOf(

:ResidentialBuilding

ObjectHasValue(:numberOfunits :moreThanTwo)

ObjectHasValue(:ownership :rental)))

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 24 15 / 20



Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberOfunits))

FunctionalObjectProperty(:numberOfunits)

ObjectPropertyDomain(:numberOfunits :ResidentialBuilding)

ObjectPropertyRange(:numberOfunits

ObjectOneOf(:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))

EquivalentClasses(:ApartmentBuilding

ObjectIntersectionOf(

:ResidentialBuilding

ObjectHasValue(:numberOfunits :moreThanTwo)

ObjectHasValue(:ownership :rental)))

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 25 15 / 20



Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in terms
of:

Genus: the super-class

Differentia: the attributes that make members of the class C
different from other members of the super-class

“If genera are different and co-ordinate, their differentiae are
themselves different in kind. Take as an instance the genus ’animal’
and the genus ’knowledge’. ’With feet’, ’two-footed’, ’winged’,
’aquatic’, are differentiae of ’animal’; the species of knowledge are
not distinguished by the same differentiae. One species of
knowledge does not differ from another in being ’two-footed’.”

Aristotle, Categories, 350 B.C.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 26 16 / 20



Example: hotel ontology

Define the following:

Room

BathRoom

StandardRoom - what is rented as a room in a hotel

Suite

RoomOnly

Hotel

HasForRent

AllSuitesHotel

NoSuitesHotel

HasSuitesHotel

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 27 17 / 20



Example: hotel ontology

Define the following:

Room

BathRoom

StandardRoom - what is rented as a room in a hotel

Suite

RoomOnly

Hotel

HasForRent

AllSuitesHotel

NoSuitesHotel

HasSuitesHotel

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 28 17 / 20



Top-Level Ontology — Basic Formal Ontology (BFO)

1: if entity continues to exist through time then
2: it is a continuant
3: if it doesn’t need another entity for its existence then
4: it is an independent continuant
5: if it has matter as a part then
6: it is a material entity
7: if it is a single coherent whole then
8: it is an object

9: else it is an immaterial entity

10: else it is a dependent continuant
11: if it a region in space then
12: it is a spatial region
13: else if it is a property then
14: if it is a property all objects have then
15: it is a quality

16: . . . role . . . disposition . . . function . . .

17: else
18: it is an occurrent
19: if it depends on a continuant then
20: if it happens over time then
21: it is a process
22: else
23: it is a process boundary

24: else if it involves space and time then
25: it is a spatio-temporal region
26: else
27: it is a temporal region

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 29 18 / 20



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.

An occurrent has temporal parts.

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

a holiday, the end of a lecture, an email, the sending of an
email, the equator, earthquake, a smile, a laugh, the smell of
a flower

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 30 19 / 20



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.

An occurrent has temporal parts.

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

a holiday, the end of a lecture, an email, the sending of an
email, the equator, earthquake, a smile, a laugh, the smell of
a flower

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 31 19 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event:

objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 32 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 33 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:

object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 34 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 35 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut:

site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 36 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 37 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view:

fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 38 20 / 20



Continuants

a pen, a person, Newtonian mechanics, the memory of a past
event: objects

a flock of birds, the students in CS422, a card collection:
object aggregates

a city, a room, a mouth, the hole of a doughnut: site

the dangerous part of a city, part of Grouse Mountain with
the best view: fiat part of an object.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 14.2, Page 39 20 / 20


