
Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.

Example: assume that a database of what students are
enrolled in a course is complete. We don’t want to have to
state all negative enrolment facts!

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.
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Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = 〈D, φ, π〉.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if φ(t1) is the same as φ(t2).

t1 6= t2 when t1 and t2 denote different individuals.

Example:
D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %
What equalities and inequalities hold?
phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil 6= phone, pencil 6= telephone

Equality does not mean similarity!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 2



Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = 〈D, φ, π〉.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if φ(t1) is the same as φ(t2).

t1 6= t2 when t1 and t2 denote different individuals.

Example:
D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %
What equalities and inequalities hold?

phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil 6= phone, pencil 6= telephone

Equality does not mean similarity!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 3



Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = 〈D, φ, π〉.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if φ(t1) is the same as φ(t2).

t1 6= t2 when t1 and t2 denote different individuals.

Example:
D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %
What equalities and inequalities hold?
phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil 6= phone, pencil 6= telephone

Equality does not mean similarity!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 4



Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = 〈D, φ, π〉.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if φ(t1) is the same as φ(t2).

t1 6= t2 when t1 and t2 denote different individuals.

Example:
D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %
What equalities and inequalities hold?
phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil 6= phone, pencil 6= telephone

Equality does not mean similarity!

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 5



Properties of Equality

Equality is:

Reflexive: X = X

Symmetric: if X = Y then Y = X

Transitive: if X = Y and Y = Z then X = Z

For each n-ary function symbol f

f (X1, . . . ,Xn) = f (Y1, . . . ,Yn) if X1 = Y1 and · · · and Xn = Yn.

For each n-ary predicate symbol p

p(X1, . . . ,Xn) if p(Y1, . . . ,Yn) and X1 = Y1 and · · · and Xn = Yn.
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Unique Names Assumption

Suppose the only clauses for enrolled are

enrolled(sam, cs222)

enrolled(chris, cs222)

enrolled(sam, cs873)

To conclude ¬enrolled(chris, cs873), what do we need to
assume?

I All other enrolled facts are false
I Inequalities:

sam 6= chris ∧ cs873 6= cs222

The unique names assumption (UNA) is the assumption that
distinct ground terms denote different individuals.
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Completion of a knowledge base: propositional case

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalently a← b1 ∨ . . . ∨ bn.

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Thus, the clauses for a mean

a↔ b1 ∨ . . . ∨ bn
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Clark Normal Form

The Clark normal form of the clause

p(t1, . . . , tk)← B.

is the clause

p(V1, . . . ,Vk)← ∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧ Vk = tk ∧ B.

where

V1, . . . ,Vk are k variables that did not appear in the original
clause

W1, . . . ,Wm are the original variables in the clause.

When the clause is an atomic clause, B is true.

Often can be simplified by replacing ∃W V = W ∧ p(W )
with P(V ).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 10



Clark Normal Form

The Clark normal form of the clause

p(t1, . . . , tk)← B.

is the clause

p(V1, . . . ,Vk)← ∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧ Vk = tk ∧ B.

where

V1, . . . ,Vk are k variables that did not appear in the original
clause

W1, . . . ,Wm are the original variables in the clause.

When the clause is an atomic clause, B is true.

Often can be simplified by replacing ∃W V = W ∧ p(W )
with P(V ).

c©D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 13.4, Page 11



Clark normal form

For the clauses

student(mary).

student(sam).

student(X )← undergrad(X ).

the Clark normal form is

student(V )← V = mary .

student(V )← V = sam.

student(V )← ∃X V = X ∧ undergrad(X ).
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Clark’s Completion

Suppose all of the clauses for p are put into Clark normal form,
with the same set of introduced variables, giving

p(V1, . . . ,Vk)← B1.
...

p(V1, . . . ,Vk)← Bn.

which is equivalent to

p(V1, . . . ,Vk)← B1 ∨ . . . ∨ Bn.

Clark’s completion of predicate p is the equivalence

∀V1 . . . ∀Vk p(V1, . . . ,Vk)↔ B1 ∨ . . . ∨ Bn

If there are no clauses for p,

the completion results in

∀V1 . . . ∀Vk p(V1, . . . ,Vk)↔ false

Clark’s completion of a knowledge base consists of the completion
of every predicate symbol along the unique names assumption.
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Completion example

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .
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Completion Example

Consider the recursive definition:

passed each([ ], St,MinPass).

passed each([C |R], St,MinPass)←
passed(St,C ,MinPass) ∧
passed each(R, St,MinPass).

In Clark normal form, this can be written as

passed each(L,S ,M)← L = [ ].

passed each(L,S ,M)←
∃C ∃R L = [C |R] ∧ passed(S ,C ,M) ∧ passed each(R, S ,M).

Here we renamed the variables as appropriate. Thus, Clark’s
completion of passed each is

∀L ∀S ∀M passed each(L,S ,M)↔ L = [ ] ∨
∃C ∃R L = [C |R] ∧ passed(S ,C ,M) ∧ passed each(R, S ,M).
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Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every predicate.

The completion of an n-ary predicate p with no clauses is
p(V1, . . . ,Vn)↔ false.

You can interpret negations in the body of clauses.
∼a means a is false under the complete knowledge
assumption. ∼a is replaced by ¬a in the completion.
This is negation as failure.
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Defining empty course

Given database of:

course(C ) that is true if C is a course

enrolled(S ,C ) that is true if student S is enrolled in course C .

Define empty course(C ) that is true if there are no students
enrolled in course C .

Using negation as failure, empty course(C ) can be defined by

empty course(C )← course(C ) ∧ ∼has enrollment(C ).

has enrollment(C )← enrolled(S ,C ).

The completion of this is:

∀C empty course(C ) ⇐⇒ course(C ) ∧ ¬has enrollment(C ).

∀C has enrollment(C ) ⇐⇒ ∃S enrolled(S ,C ).
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Bottom-up negation as failure interpreter

C := {};
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible
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Negation as failure example

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .
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Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.

Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.

A body fails if one of the conjuncts in the body fails.

Note that you need finite failure. Example p ← p.
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Floundering

p(X )← ∼q(X ) ∧ r(X ).

q(a).

q(b).

r(d).

ask p(X ).

What is the answer to the query?

How can a top-down proof procedure find the answer?

Delay the subgoal until it is bound enough.
Sometimes it never gets bound enough — “floundering”.
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Problematic Cases

p(X )← ∼q(X )

q(X )← ∼r(X )

r(a)

ask p(X ).

What is the answer?

What does delaying do?

How can this be implemented?
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