Often you want to assume that your knowledge is complete.

Example: assume that a database of what students are enrolled in a course is complete. We don’t want to have to state all negative enrolment facts!

The definite clause language is **monotonic:** adding clauses can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is **non-monotonic:** adding clauses can invalidate a previous conclusion.
Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I = \langle D, \phi, \pi \rangle$.
- t_1 and t_2 are ground terms then $t_1 = t_2$ is true in interpretation I if t_1 and t_2 denote the same individual. That is, $t_1 = t_2$ if $\phi(t_1)$ is the same as $\phi(t_2)$.
- $t_1 \neq t_2$ when t_1 and t_2 denote different individuals.

Example:

$D = \{c, d, e\}$.

$\phi(\text{phone}) = a$,
$\phi(\text{pencil}) = b$,
$\phi(\text{telephone}) = c$.

What equalities and inequalities hold?

- $\text{phone} = \text{telephone}$,
- $\text{phone} = \text{phone}$,
- $\text{pencil} = \text{pencil}$,
- $\text{telephone} = \text{telephone}$,
- $\text{pencil} \neq \text{phone}$,
- $\text{pencil} \neq \text{telephone}$.

Equality does not mean similarity!
Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I = \langle D, \phi, \pi \rangle$.
- t_1 and t_2 are ground terms then $t_1 = t_2$ is true in interpretation I if t_1 and t_2 denote the same individual. That is, $t_1 = t_2$ if $\phi(t_1)$ is the same as $\phi(t_2)$.
- $t_1 \neq t_2$ when t_1 and t_2 denote different individuals.

Example:

$D = \{\text{phone}, \text{pencil}, \text{telephone} \}$.

$\phi(\text{phone}) = \text{phone}, \phi(\text{pencil}) = \text{pencil}, \phi(\text{telephone}) = \text{telephone}$

What equalities and inequalities hold?
Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I = \langle D, \phi, \pi \rangle$.

- t_1 and t_2 are ground terms then $t_1 = t_2$ is true in interpretation I if t_1 and t_2 denote the same individual. That is, $t_1 = t_2$ if $\phi(t_1)$ is the same as $\phi(t_2)$.

- $t_1 \neq t_2$ when t_1 and t_2 denote different individuals.

- Example:

 $D = \{\text{phone}, \text{pencil}, \text{telephone}\}$.

 $\phi(\text{phone}) = \text{phone}$, $\phi(\text{pencil}) = \text{pencil}$, $\phi(\text{telephone}) = \text{telephone}$

 What equalities and inequalities hold?

 $\text{phone} = \text{telephone}$, $\text{phone} = \text{phone}$, $\text{pencil} = \text{pencil}$, $\text{telephone} = \text{telephone}$

 $\text{pencil} \neq \text{phone}$, $\text{pencil} \neq \text{telephone}$

Equality does not mean similarity!
Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I = \langle D, \phi, \pi \rangle$.
- t_1 and t_2 are ground terms then $t_1 = t_2$ is true in interpretation I if t_1 and t_2 denote the same individual. That is, $t_1 = t_2$ if $\phi(t_1)$ is the same as $\phi(t_2)$.
- $t_1 \neq t_2$ when t_1 and t_2 denote different individuals.
- Example:
 $D = \{\text{phone}, \text{pencil}, \text{telephone}\}$.
 $\phi(\text{phone}) = \text{phone}, \phi(\text{pencil}) = \text{pencil}, \phi(\text{telephone}) = \text{telephone}$
 What equalities and inequalities hold?
 $\text{phone} = \text{telephone}, \text{phone} = \text{phone}, \text{pencil} = \text{pencil}, \text{telephone} = \text{telephone}$
 $\text{pencil} \neq \text{phone}, \text{pencil} \neq \text{telephone}$
- Equality does not mean similarity!
Equality is:

- **Reflexive**: $X = X$
- **Symmetric**: if $X = Y$ then $Y = X$
- **Transitive**: if $X = Y$ and $Y = Z$ then $X = Z$

For each n-ary function symbol f

$$f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n) \text{ if } X_1 = Y_1 \text{ and } \cdots \text{ and } X_n = Y_n.$$

For each n-ary predicate symbol p

$$p(X_1, \ldots, X_n) \text{ if } p(Y_1, \ldots, Y_n) \text{ and } X_1 = Y_1 \text{ and } \cdots \text{ and } X_n = Y_n.$$
Suppose the only clauses for enrolled are:

- \textit{enrolled}((\textit{sam}, \textit{cs222}))
- \textit{enrolled}((\textit{chris}, \textit{cs222}))
- \textit{enrolled}((\textit{sam}, \textit{cs873}))

To conclude \textit{\neg enrolled}((\textit{chris}, \textit{cs873})), what do we need to assume?
Unique Names Assumption

- Suppose the only clauses for enrolled are

 \[
 \text{enrolled}(\text{sam}, \text{cs222})
 \]

 \[
 \text{enrolled}(\text{chris}, \text{cs222})
 \]

 \[
 \text{enrolled}(\text{sam}, \text{cs873})
 \]

To conclude \(\neg \text{enrolled}(\text{chris}, \text{cs873})\), what do we need to assume?

- All other enrolled facts are false
- Inequalities:

\[
\text{sam} \neq \text{chris} \land \text{cs873} \neq \text{cs222}
\]

- The unique names assumption (UNA) is the assumption that distinct ground terms denote different individuals.
Suppose the rules for atom a are

\[
a \leftarrow b_1.
\]

\[
\vdots
\]

\[
a \leftarrow b_n.
\]

equivalently $a \leftarrow b_1 \lor \ldots \lor b_n$.

Under the Complete Knowledge Assumption, if a is true, one of the b_i must be true:

\[
a \rightarrow b_1 \lor \ldots \lor b_n.
\]

Thus, the clauses for a mean

\[
a \leftrightarrow b_1 \lor \ldots \lor b_n
\]
Clark Normal Form

The Clark normal form of the clause

\[p(t_1, \ldots, t_k) \leftarrow B. \]

is the clause

\[p(V_1, \ldots, V_k) \leftarrow \exists W_1 \ldots \exists W_m \ V_1 = t_1 \land \ldots \land V_k = t_k \land B. \]

where

- \(V_1, \ldots, V_k \) are \(k \) variables that did not appear in the original clause
- \(W_1, \ldots, W_m \) are the original variables in the clause.
Clark Normal Form

The Clark normal form of the clause

\[p(t_1, \ldots, t_k) \leftarrow B. \]

is the clause

\[p(V_1, \ldots, V_k) \leftarrow \exists W_1 \ldots \exists W_m \; V_1 = t_1 \land \ldots \land V_k = t_k \land B. \]

where

- \(V_1, \ldots, V_k \) are \(k \) variables that did not appear in the original clause
- \(W_1, \ldots, W_m \) are the original variables in the clause.
- When the clause is an atomic clause, \(B \) is true.
- Often can be simplified by replacing \(\exists W \; V = W \land p(W) \) with \(P(V) \).
Clark normal form

For the clauses

\[\text{student}(\text{mary}). \]
\[\text{student}(\text{sam}). \]
\[\text{student}(X) \leftarrow \text{undergrad}(X). \]

the Clark normal form is

\[\text{student}(V) \leftarrow V = \text{mary}. \]
\[\text{student}(V) \leftarrow V = \text{sam}. \]
\[\text{student}(V) \leftarrow \exists X \ V = X \land \text{undergrad}(X). \]
Clark’s Completion

Suppose all of the clauses for p are put into Clark normal form, with the same set of introduced variables, giving

$$p(V_1, \ldots, V_k) \leftarrow B_1.$$

$$\vdots$$

$$p(V_1, \ldots, V_k) \leftarrow B_n.$$

which is equivalent to

$$p(V_1, \ldots, V_k) \leftarrow B_1 \lor \ldots \lor B_n.$$

Clark’s completion of predicate p is the equivalence

$$\forall V_1 \ldots \forall V_k p(V_1, \ldots, V_k) \leftrightarrow B_1 \lor \ldots \lor B_n$$

If there are no clauses for p,

\[\]
Clark’s Completion

Suppose all of the clauses for p are put into Clark normal form, with the same set of introduced variables, giving

$$p(V_1, \ldots, V_k) \leftarrow B_1.$$

\[\vdots \]

$$p(V_1, \ldots, V_k) \leftarrow B_n.$$

which is equivalent to

$$p(V_1, \ldots, V_k) \leftarrow B_1 \lor \ldots \lor B_n.$$

Clark’s completion of predicate p is the equivalence

$$\forall V_1 \ldots \forall V_k \ p(V_1, \ldots, V_k) \leftrightarrow B_1 \lor \ldots \lor B_n$$

If there are no clauses for p, the completion results in

$$\forall V_1 \ldots \forall V_k \ p(V_1, \ldots, V_k) \leftrightarrow false$$

Clark’s completion of a knowledge base consists of the completion of every predicate symbol along the unique names assumption.
Completion example

\[p \leftarrow q \land \neg r. \]
\[p \leftarrow s. \]
\[q \leftarrow \neg s. \]
\[r \leftarrow \neg t. \]
\[t. \]
\[s \leftarrow w. \]
Completion Example

Consider the recursive definition:

\[
passed_each([], St, MinPass).
\]

\[
passed_each([C|R], St, MinPass) \leftarrow
\]

\[
passed(St, C, MinPass) \land
\]

\[
passed_each(R, St, MinPass).
\]

In Clark normal form, this can be written as
Completion Example

Consider the recursive definition:

\[
\text{passed}\text{_each}([], St, \text{MinPass}).
\]
\[
\text{passed}\text{_each}([C|R], St, \text{MinPass}) \leftarrow \\
\quad \text{passed}(St, C, \text{MinPass}) \land \\
\quad \text{passed}\text{_each}(R, St, \text{MinPass}).
\]

In Clark normal form, this can be written as

\[
\text{passed}\text{_each}(L, S, M) \leftarrow L = [].
\]
\[
\text{passed}\text{_each}(L, S, M) \leftarrow \\
\quad \exists C \exists R L = [C|R] \land \text{passed}(S, C, M) \land \text{passed}\text{_each}(R, S, M).
\]

Here we renamed the variables as appropriate. Thus, Clark’s completion of \text{passed}\text{_each} is
Completion Example

Consider the recursive definition:

\[
\text{passed_each}([], St, \text{MinPass}).
\]
\[
\text{passed_each}([C \mid R], St, \text{MinPass}) \leftarrow
\]
\[
\text{passed}(St, C, \text{MinPass}) \land
\]
\[
\text{passed_each}(R, St, \text{MinPass}).
\]

In Clark normal form, this can be written as

\[
\text{passed_each}(L, S, M) \leftarrow L = [].
\]
\[
\text{passed_each}(L, S, M) \leftarrow
\]
\[
\exists C \exists R L = [C \mid R] \land \text{passed}(S, C, M) \land \text{passed_each}(R, S, M).
\]

Here we renamed the variables as appropriate. Thus, Clark’s completion of \text{passed_each} is

\[
\forall L \forall S \forall M \text{passed_each}(L, S, M) \leftrightarrow L = [] \lor
\]
\[
\exists C \exists R L = [C \mid R] \land \text{passed}(S, C, M) \land \text{passed_each}(R, S, M).
\]
Clark’s completion of a knowledge base consists of the completion of every predicate.

The completion of an n-ary predicate p with no clauses is $p(V_1, \ldots, V_n) \Leftrightarrow \text{false}$.

You can interpret negations in the body of clauses. $\sim a$ means a is false under the complete knowledge assumption. $\sim a$ is replaced by $\neg a$ in the completion. This is negation as failure.
Defining *empty_course*

Given database of:

- \(\text{course}(C) \) that is true if \(C \) is a course
- \(\text{enrolled}(S, C) \) that is true if student \(S \) is enrolled in course \(C \).

Define *empty_course*(\(C \)) that is true if there are no students enrolled in course \(C \).
Defining *empty_course*

Given database of:

- \(\text{course}(C)\) that is true if \(C\) is a course
- \(\text{enrolled}(S, C)\) that is true if student \(S\) is enrolled in course \(C\).

Define *empty_course*(\(C\)) that is true if there are no students enrolled in course \(C\).

- Using negation as failure, *empty_course*(\(C\)) can be defined by
 \[
 \text{empty}_\text{course}(C) \leftarrow \text{course}(C) \land \neg \text{has_enrollment}(C).
 \]
 \[
 \text{has_enrollment}(C) \leftarrow \text{enrolled}(S, C).
 \]
Defining `empty_course`

Given database of:

- `course(C)` that is true if `C` is a course
- `enrolled(S, C)` that is true if student `S` is enrolled in course `C`.

Define `empty_course(C)` that is true if there are no students enrolled in course `C`.

- Using negation as failure, `empty_course(C)` can be defined by

 \[
 \text{empty}_{\text{course}}(C) \leftarrow \text{course}(C) \land \neg \text{has}_{\text{enrollment}}(C).
 \]

 \[
 \text{has}_{\text{enrollment}}(C) \leftarrow \text{enrolled}(S, C).
 \]

- The completion of this is:
Defining \textit{empty_course}

Given database of:

- \textit{course}(C) that is true if \(C \) is a course
- \textit{enrolled}(S, C) that is true if student \(S \) is enrolled in course \(C \).

Define \textit{empty_course}(C) that is true if there are no students enrolled in course \(C \).

Using negation as failure, \textit{empty_course}(C) can be defined by

\[
\text{empty_course}(C) \leftarrow \text{course}(C) \land \lnot \text{has_enrollment}(C).
\]
\[
\text{has_enrollment}(C) \leftarrow \text{enrolled}(S, C).
\]

The completion of this is:

\[
\forall C \text{ empty_course}(C) \iff \text{course}(C) \land \lnot \text{has_enrollment}(C).
\]
\[
\forall C \text{ has_enrollment}(C) \iff \exists S \text{ enrolled}(S, C).
\]
Bottom-up negation as failure interpreter

\[C := \{\}; \]
repeat
 either
 select \(r \in KB \) such that
 \(r \) is “\(h \leftarrow b_1 \land \ldots \land b_m \)”
 \(b_i \in C \) for all \(i \), and
 \(h \notin C \);
 \(C := C \cup \{h\} \)
 or
 select \(h \) such that for every rule “\(h \leftarrow b_1 \land \ldots \land b_m \)” \(\in KB \)
 either for some \(b_i, \sim b_i \in C \)
 or some \(b_i = \sim g \) and \(g \in C \)
 \(C := C \cup \{\sim h\} \)
 until no more selections are possible
Negation as failure example

\[p \leftarrow q \land \sim r. \]
\[p \leftarrow s. \]
\[q \leftarrow \sim s. \]
\[r \leftarrow \sim t. \]
\[t. \]
\[s \leftarrow w. \]
If the proof for a fails, you can conclude $\sim a$.

Failure can be defined recursively: Suppose you have rules for atom a:

$$a \leftarrow b_1$$
$$\vdots$$
$$a \leftarrow b_n$$

If each body b_i fails, a fails.

A body fails if one of the conjuncts in the body fails.

Note that you need *finite* failure. Example $p \leftarrow p$.
Floundering

\[p(X) \leftarrow \neg q(X) \land r(X). \]
\[q(a). \]
\[q(b). \]
\[r(d). \]
\[\text{ask } p(X). \]

- What is the answer to the query?
Floundering

\[p(X) \leftarrow \sim q(X) \land r(X). \]
\[q(a). \]
\[q(b). \]
\[r(d). \]
\[\text{ask } p(X). \]

- What is the answer to the query?
- How can a top-down proof procedure find the answer?
Floundering

\[p(X) \leftarrow \neg q(X) \land r(X). \]

\[q(a). \]

\[q(b). \]

\[r(d). \]

\[\text{ask } p(X). \]

- What is the answer to the query?
- How can a top-down proof procedure find the answer?
- Delay the subgoal until it is bound enough.
 Sometimes it never gets bound enough — “floundering”.
Problematic Cases

\[p(X) \leftarrow \sim q(X) \]
\[q(X) \leftarrow \sim r(X) \]
\[r(a) \]
ask \(p(X) \).

What is the answer?
Problematic Cases

\[p(X) \leftarrow \sim q(X) \]
\[q(X) \leftarrow \sim r(X) \]
\[r(a) \]
\[\text{ask } p(X). \]

- What is the answer?
- What does delaying do?
Problematic Cases

\[p(X) \leftarrow \sim q(X) \]
\[q(X) \leftarrow \sim r(X) \]
\[r(a) \]
\[\text{ask } p(X). \]

- What is the answer?
- What does delaying do?
- How can this be implemented?