Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\} \), where each \(V_i \) is a distinct variable and each \(t_i \) is a term.
- The application of a substitution \(\sigma = \{V_1/t_1, \ldots, V_n/t_n\} \) to an atom or clause \(e \), written \(e\sigma \), is the instance of \(e \) with every occurrence of \(V_i \) replaced by \(t_i \).
The following are substitutions:

\[\sigma_1 = \{X/A, Y/b, Z/C, D/e\} \]
\[\sigma_2 = \{A/X, Y/b, C/Z, D/e\} \]
\[\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \]

The following shows some applications:

\[p(A, b, C, D)\sigma_1 = \]
\[p(X, Y, Z, e)\sigma_1 = \]
\[p(A, b, C, D)\sigma_2 = \]
\[p(X, Y, Z, e)\sigma_2 = \]
\[p(A, b, C, D)\sigma_3 = \]
\[p(X, Y, Z, e)\sigma_3 = \]
The following are substitutions:
\[\sigma_1 = \{ X/A, Y/b, Z/C, D/e \} \]
\[\sigma_2 = \{ A/X, Y/b, C/Z, D/e \} \]
\[\sigma_3 = \{ A/V, X/V, Y/b, C/W, Z/W, D/e \} \]

The following shows some applications:
\[p(A, b, C, D)\sigma_1 = p(A, b, C, e) \]
\[p(X, Y, Z, e)\sigma_1 = \]
\[p(A, b, C, D)\sigma_2 = \]
\[p(X, Y, Z, e)\sigma_2 = \]
\[p(A, b, C, D)\sigma_3 = \]
\[p(X, Y, Z, e)\sigma_3 = \]
The following are substitutions:

\[\sigma_1 = \{X/A, Y/b, Z/C, D/e\} \]
\[\sigma_2 = \{A/X, Y/b, C/Z, D/e\} \]
\[\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \]

The following shows some applications:

\[p(A, b, C, D)\sigma_1 = p(A, b, C, e) \]
\[p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) \]
\[p(A, b, C, D)\sigma_2 = \]
\[p(X, Y, Z, e)\sigma_2 = \]
\[p(A, b, C, D)\sigma_3 = \]
\[p(X, Y, Z, e)\sigma_3 = \]
Application Examples

The following are substitutions:
\[
\sigma_1 = \{X/A, Y/b, Z/C, D/e\}
\]
\[
\sigma_2 = \{A/X, Y/b, C/Z, D/e\}
\]
\[
\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}
\]

The following shows some applications:
\[
p(A, b, C, D)\sigma_1 = p(A, b, C, e)
\]
\[
p(X, Y, Z, e)\sigma_1 = p(A, b, C, e)
\]
\[
p(A, b, C, D)\sigma_2 = p(X, b, Z, e)
\]
\[
p(X, Y, Z, e)\sigma_2 =
\]
\[
p(A, b, C, D)\sigma_3 =
\]
\[
p(X, Y, Z, e)\sigma_3 =
\]
The following are substitutions:

\[\sigma_1 = \{ X/A, Y/b, Z/C, D/e \} \]
\[\sigma_2 = \{ A/X, Y/b, C/Z, D/e \} \]
\[\sigma_3 = \{ A/V, X/V, Y/b, C/W, Z/W, D/e \} \]

The following shows some applications:

\[p(A, b, C, D)\sigma_1 = p(A, b, C, e) \]
\[p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) \]
\[p(A, b, C, D)\sigma_2 = p(X, b, Z, e) \]
\[p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) \]
\[p(A, b, C, D)\sigma_3 = \]
\[p(X, Y, Z, e)\sigma_3 = \]
The following are substitutions:
\[\sigma_1 = \{ X/A, Y/b, Z/C, D/e \} \]
\[\sigma_2 = \{ A/X, Y/b, C/Z, D/e \} \]
\[\sigma_3 = \{ A/V, X/V, Y/b, C/W, Z/W, D/e \} \]

The following shows some applications:
\[p(A, b, C, D)\sigma_1 = p(A, b, C, e) \]
\[p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) \]
\[p(A, b, C, D)\sigma_2 = p(X, b, Z, e) \]
\[p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) \]
\[p(A, b, C, D)\sigma_3 = p(V, b, W, e) \]
\[p(X, Y, Z, e)\sigma_3 = \]
The following are substitutions:

\[\sigma_1 = \{X/A, Y/b, Z/C, D/e\} \]
\[\sigma_2 = \{A/X, Y/b, C/Z, D/e\} \]
\[\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \]

The following shows some applications:

\[p(A, b, C, D)\sigma_1 = p(A, b, C, e) \]
\[p(X, Y, Z, e)\sigma_1 = p(A, b, C, e) \]
\[p(A, b, C, D)\sigma_2 = p(X, b, Z, e) \]
\[p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e) \]
\[p(A, b, C, D)\sigma_3 = p(V, b, W, e) \]
\[p(X, Y, Z, e)\sigma_3 = p(V, b, W, e) \]
Unifiers

- Substitution σ is a **unifier** of e_1 and e_2 if $e_1\sigma = e_2\sigma$.
- Substitution σ is a **most general unifier (mgu)** of e_1 and e_2 if
 - σ is a unifier of e_1 and e_2; and
 - if substitution σ' also unifies e_1 and e_2, then $e\sigma'$ is an instance of $e\sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.
Which of the following are unifiers of \(p(A, b, C, D) \) and
\(p(X, Y, Z, e) \):
\[
\sigma_1 = \{X/A, Y/b, Z/C, D/e\} \\
\sigma_2 = \{Y/b, D/e\} \\
\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\} \\
\sigma_4 = \{A/X, Y/b, C/Z, D/e\} \\
\sigma_5 = \{X/a, Y/b, Z/c, D/e\} \\
\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\} \\
\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\} \\
\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}
\]

Which are most general unifiers?
$p(A, b, C, D)$ and $p(X, Y, Z, e)$ have as unifiers:

$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$
$\sigma_4 = \{A/X, Y/b, C/Z, D/e\}$
$\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$
$\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$
$\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}$
$\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\}$

The first three are most general unifiers.

The following substitutions are not unifiers:

$\sigma_2 = \{Y/b, D/e\}$
$\sigma_5 = \{X/a, Y/b, Z/c, D/e\}$
1: **procedure** *unify*(*t_1*, *t_2*) \[\triangleright\text{Returns mgu of } t_1 \text{ and } t_2 \text{ or } \bot.\]
2: \[E \leftarrow \{t_1 = t_2\}\] \[\triangleright\text{Set of equality statements}\]
3: \[S \leftarrow \{}\] \[\triangleright\text{Substitution}\]
4: **while** \(E \neq \{}\) **do**
5: \hspace{1cm} select and remove \(x = y\) from \(E\)
6: \hspace{2cm} **if** \(y\) is not identical to \(x\) **then**
7: \hspace{3cm} **if** \(x\) is a variable **then**
8: \hspace{4cm} replace \(x\) with \(y\) in \(E\) and \(S\)
9: \hspace{4cm} \(S \leftarrow \{x/y\} \cup S\)
10: \hspace{2cm} **else if** \(y\) is a variable **then**
11: \hspace{3cm} replace \(y\) with \(x\) in \(E\) and \(S\)
12: \hspace{3cm} \(S \leftarrow \{y/x\} \cup S\)
13: \hspace{2cm} **else if** \(x\) is \(p(x_1, \ldots, x_n)\) and \(y\) is \(p(y_1, \ldots, y_n)\) **then**
14: \hspace{3cm} \(E \leftarrow E \cup \{x_1 = y_1, \ldots, x_n = y_n\}\)
15: \hspace{2cm} **else**
16: \hspace{3cm} **return** \(\bot\) \[\triangleright\text{ } t_1 \text{ and } t_2 \text{ do not unify}\]
17: \hspace{2cm} **return** \(S\) \[\triangleright S \text{ is mgu of } t_1 \text{ and } t_2\]

©D. Poole and A. Mackworth 2016 \[\quad\]\[Artificial Intelligence, Lecture 13.3, Page 12\]
Atom g is a logical consequence of KB if and only if:

- g is an instance of a fact in KB, or
- there is an instance of a rule

$$g \leftarrow b_1 \land \ldots \land b_k$$

in KB such that each b_i is a logical consequence of KB.
Aside: Debugging false conclusions

To debug answer g that is false in the intended interpretation:

- If g is a fact in KB, this fact is wrong.
- Otherwise, suppose g was proved using the rule:

 $$ g \leftarrow b_1 \land \ldots \land b_k $$

 where each b_i is a logical consequence of KB.

 - If each b_i is true in the intended interpretation, this clause is false in the intended interpretation.
 - If some b_i is false in the intended interpretation, debug b_i.
A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

Given a proof procedure, \(KB \vdash g \) means \(g \) can be derived from knowledge base \(KB \).

Recall \(KB \models g \) means \(g \) is true in all models of \(KB \).

A proof procedure is sound if \(KB \vdash g \) implies \(KB \models g \).

A proof procedure is complete if \(KB \models g \) implies \(KB \vdash g \).
Bottom-up proof procedure

$KB \vdash g$ if there is g' added to C in this procedure where $g = g'\theta$:

$C := \{\};$

repeat

select clause “$h \leftarrow b_1 \land \ldots \land b_m$” in KB such that there is a substitution θ such that for all i, there exists $b'_i \in C$ and θ'_i where $b_i\theta = b'_i\theta'_i$ and there is no $h' \in C$ and θ' such that $h'\theta' = h\theta$

$C := C \cup \{h\theta\}$

until no more clauses can be selected.
Example

\[\text{live}(Y) \leftarrow \text{connected}_\text{to}(Y, Z) \land \text{live}(Z). \quad \text{live(\text{outside}).} \]

\[\text{connected}_\text{to}(w_6, w_5). \quad \text{connected}_\text{to}(w_5, \text{outside}).\]
Example

\[
live(Y) \leftarrow connected_to(Y, Z) \land live(Z).\ live(outside).
\]
\[
connected_to(w_6, w_5).\ connected_to(w_5, outside).
\]
\[
C = \{ live(outside),
\quad connected_to(w_6, w_5),
\quad connected_to(w_5, outside),
\quad live(w_5),
\quad live(w_6)\}\]
Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn’t true in every model of KB. Call it h.
If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \models \neq g$.
- Then there must be a first atom added to C that has an instance that isn’t true in every model of KB. Call it h.
- Suppose h isn’t true in model I of KB.
- There must be an instance of clause in KB of form

$$h' \leftarrow b_1 \land \ldots \land b_m$$

where
Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn’t true in every model of KB. Call it h.
- Suppose h isn’t true in model I of KB.
- There must be an instance of clause in KB of form

 $$ h' \leftarrow b_1 \land \ldots \land b_m $$

 where $h = h'\theta$ and $b_i\theta$ is an instance of an element of C.
 - Each $b_i\theta$ is true in I.
 - h is false in I.
 - So an instance of this clause is false in I.
 - Therefore I isn’t a model of KB.
 - Contradiction.
- The C generated by the bottom-up algorithm is called a fixed point.

- C can be infinite; we require the selection to be fair.

- **Herbrand interpretation:** The domain is the set of constants. We invent a constant if the KB or query doesn’t contain one. Each constant denotes itself.
Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- **Herbrand interpretation:** The domain is the set of constants. We invent a constant if the KB or query doesn’t contain one. Each constant denotes itself.
- Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
The C generated by the bottom-up algorithm is called a fixed point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn’t contain one. Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.

I is a model of KB.

Proof:
The \(C \) generated by the bottom-up algorithm is called a **fixed point**.

\(C \) can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants. We invent a constant if the KB or query doesn’t contain one. Each constant denotes itself.

Let \(I \) be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.

\(I \) is a model of \(KB \).

Proof: suppose \(h \leftarrow b_1 \land \ldots \land b_m \) in \(KB \) is false in \(I \). Then \(h \) is false and each \(b_i \) is true in \(I \). Thus \(h \) can be added to \(C \). Contradiction to \(C \) being the fixed point.

\(I \) is called a **Minimal Model**.
Completeness

If $KB \models g$ then $KB \models g$.

- Suppose $KB \models g$. Then g is true in all models of KB.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus $KB \models g$.
If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
Completeness

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.
A generalized answer clause is of the form

\[
\text{yes}(t_1, \ldots, t_k) \leftarrow a_1 \land a_2 \land \cdots \land a_m,
\]

where \(t_1, \ldots, t_k \) are terms and \(a_1, \ldots, a_m \) are atoms.
A generalized answer clause is of the form
\[
\text{yes}(t_1, \ldots, t_k) \leftarrow a_1 \land a_2 \land \ldots \land a_m,
\]
where \(t_1, \ldots, t_k \) are terms and \(a_1, \ldots, a_m \) are atoms.

The SLD resolution of this generalized answer clause on \(a_i \) with the clause
\[
a \leftarrow b_1 \land \ldots \land b_p,
\]
where \(a_i \) and \(a \) have most general unifier \(\theta \), is
\[
(\text{yes}(t_1, \ldots, t_k) \leftarrow
a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m)\theta.
\]
To solve query \(?B\) with variables \(V_1, \ldots, V_k\):

Set \(ac\) to generalized answer clause \(yes(V_1, \ldots, V_k) \leftarrow B\)

\(\textbf{while } ac \text{ is not an answer } \textbf{do}\)

- Suppose \(ac\) is \(yes(t_1, \ldots, t_k) \leftarrow a_1 \land a_2 \land \ldots \land a_m\)
- \(\textbf{select} \) atom \(a_i\) in the body of \(ac\)
- \(\textbf{choose} \) clause \(a \leftarrow b_1 \land \ldots \land b_p\) in \(KB\)
- Rename all variables in \(a \leftarrow b_1 \land \ldots \land b_p\)
- Let \(\theta\) be the most general unifier of \(a_i\) and \(a\).
 - Fail if they don’t unify
- Set \(ac\) to \((yes(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m)\theta\)

\(\textbf{end while}\).

Answer is \(V_1 = t_1, \ldots, V_k = t_k\)

where \(ac\) is \(yes(t_1, \ldots, t_k) \leftarrow \)
Example

\[\text{live}(Y) \leftarrow \text{connected}_\text{to}(Y, Z) \land \text{live}(Z). \quad \text{live(outside)}.\]
\[\text{connected}_\text{to}(w_6, w_5). \quad \text{connected}_\text{to}(w_5, \text{outside}).\]
\[?\text{live}(A)\].
Example

\[\text{live}(Y) \leftarrow \text{connected_to}(Y, Z) \land \text{live}(Z). \quad \text{live(outside)}. \]

\[\text{connected_to}(w_6, w_5). \quad \text{connected_to}(w_5, \text{outside}). \]

\[\text{?live}(A). \]

\[\text{yes}(A) \leftarrow \text{live}(A). \]

\[\text{yes}(A) \leftarrow \text{connected_to}(A, Z_1) \land \text{live}(Z_1). \]

\[\text{yes}(w_6) \leftarrow \text{live}(w_5). \]

\[\text{yes}(w_6) \leftarrow \text{connected_to}(w_5, Z_2) \land \text{live}(Z_2). \]

\[\text{yes}(w_6) \leftarrow \text{live(outside)}. \]

\[\text{yes}(w_6) \leftarrow . \]
Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term. So that a term can be $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.

In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.

One function symbol and one constant can refer to infinitely many individuals.
Lists

- A list is an ordered sequence of elements.
- Let’s use the constant \textit{nil} to denote the empty list, and the function $\textit{cons}(H, T)$ to denote the list with first element H and rest-of-list T. These are not built-in.
- The list containing sue, kim and $randy$ is

$$\textit{cons}(sue, \textit{cons}(kim, \textit{cons}(randy, \textit{nil})))$$

- $\textit{append}(X, Y, Z)$ is true if list Z contains the elements of X followed by the elements of Y

Consider a knowledge base consisting of one fact:

\[\text{lt}(X, s(X)). \]

Should the following query succeed?

\[\text{ask} \quad \text{lt}(Y, Y). \]
Consider a knowledge base consisting of one fact:

\[\text{lt}(X, s(X)). \]

Should the following query succeed?

\[\text{ask} \quad \text{lt}(Y, Y). \]

What does the top-down proof procedure give?
Unification with function symbols

- Consider a knowledge base consisting of one fact:

\[\text{lt}(X, s(X)). \]

- Should the following query succeed?

\[\text{ask } \text{lt}(Y, Y). \]

- What does the top-down proof procedure give?

- Solution: variable \(X \) should not unify with a term that contains \(X \) inside.
 E.g., \(X \) should not unify with \(s(X) \).
 Simple modification of the unification algorithm, which Prolog does not do!