Learning Summary

Given a task, use
- data/experience
- bias/background knowledge
- measure of improvement or error

to improve performance on the task.
Learning Summary

- Given a task, use
 - data/experience
 - bias/background knowledge
 - measure of improvement or error
 to improve performance on the task.

- Representations for:
 - Data (e.g., discrete values, indicator functions)
 - Models (e.g., decision trees, linear functions, linear separators, neural networks)
Learning Summary

- Given a task, use
 - data/experience
 - bias/background knowledge
 - measure of improvement or error

 to improve performance on the task.

- Representations for:
 - Data (e.g., discrete values, indicator functions)
 - Models (e.g., decision trees, linear functions, linear separators, neural networks)

- A way to handle overfitting (e.g., trade-off model complexity and fit-to-data, cross validation).
Learning Summary

- Given a task, use
 - data/experience
 - bias/background knowledge
 - measure of improvement or error
 to improve performance on the task.

- Representations for:
 - Data (e.g., discrete values, indicator functions)
 - Models (e.g., decision trees, linear functions, linear separators, neural networks)

- A way to handle overfitting (e.g., trade-off model complexity and fit-to-data, cross validation).

- Search algorithm (usually local, myopic search) to find the best model that fits the data given the bias.
At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning and SARSA
Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning and SARSA
- Explain the explore-exploit dilemma and solutions
Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning and SARSA
- Explain the explore-exploit dilemma and solutions
- Explain the difference between on-policy and off-policy reinforcement learning
Reinforcement Learning

What should an agent do given:

- Prior knowledge
- Observations
- Goal
What should an agent do given:

- **Prior knowledge**
 - possible states of the world
 - possible actions

- **Observations**

- **Goal**
Reinforcement Learning

What should an agent do given:

- **Prior knowledge** possible states of the world possible actions
- **Observations** current state of world immediate reward / punishment
- **Goal**
Reinforcement Learning

What should an agent do given:

- **Prior knowledge**: possible states of the world, possible actions
- **Observations**: current state of world, immediate reward / punishment
- **Goal**: act to maximize accumulated (discounted) reward

Like decision-theoretic planning, except model of dynamics and model of reward not given.
Reinforcement Learning

What should an agent do given:

- **Prior knowledge** possible states of the world
 possible actions

- **Observations** current state of world
 immediate reward / punishment

- **Goal** act to maximize accumulated (discounted) reward

- Like decision-theoretic planning, except model of dynamics and model of reward not given.
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog - reward obedience, punish destructive behavior
- Robot - reward task completion, punish dangerous behavior
Reinforcement Learning Examples

- Game - reward winning, punish losing
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog -
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog - reward obedience, punish destructive behavior
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog - reward obedience, punish destructive behavior
- Robot -
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog - reward obedience, punish destructive behavior
- Robot - reward task completion, punish dangerous behavior
We assume there is a sequence of experiences:

\[\text{state, action, reward, state, action, reward, ...} \]
Experiences

- We assume there is a sequence of experiences:

 \[\text{state}, \text{action}, \text{reward}, \text{state}, \text{action}, \text{reward}, \ldots \]

- The sequence of experiences up to the time the agent has to choose its action is its \text{history}.

- The agent has to choose its action as a function of its \text{history}.
Experiences

- We assume there is a sequence of experiences:

 \[\text{state, action, reward, state, action, reward, ...} \]

- The sequence of experiences up to the time the agent has to choose its action is its history.
- The agent has to choose its action as a function of its history.
- At any time it must decide whether to

 ◀ explore to gain more knowledge
 ◀ exploit knowledge it has already discovered
Experiences

- We assume there is a sequence of experiences:
 \[\text{state}, \text{action}, \text{reward}, \text{state}, \text{action}, \text{reward}, \ldots \]

- The sequence of experiences up to the time the agent has to choose its action is its history.

- The agent has to choose its action as a function of its history.

- At any time it must decide whether to:
 - explore to gain more knowledge
 - exploit knowledge it has already discovered
Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was responsible for it being scolded at the end of the day.

- The long-term effect of an action depends on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.

- The explore-exploit dilemma: at each time should the agent be greedy or inquisitive?
Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was responsible for it being scolded at the end of the day.

- The long-term effect of an action depend on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.
Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was responsible for it being scolded at the end of the day.
- The long-term effect of an action depends on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.
- The explore-exploit dilemma: at each time should the agent be greedy or inquisitive?
Reinforcement learning: main approaches

- search through a space of policies (controllers)
Reinforcement learning: main approaches

- search through a space of policies (controllers)
- learn a model consisting of state transition function $P(s'|a, s)$ and reward function $R(s, a)$; solve this an an MDP.
- search through a space of policies (controllers)
- learn a model consisting of state transition function $P(s'|a, s)$ and reward function $R(s, a)$; solve this as an MDP.
- learn $Q^*(s, a)$, use this to guide action.
Recall: Asynchronous VI for MDPs, storing $Q[s, a]$

(If we knew the model):

Initialize $Q[S, A]$ arbitrarily
Repeat forever:
 - Select state s, action a
 - $Q[s, a] := R(s, a) + \gamma \sum_{s'} P(s'|s, a) \left(\max_{a'} Q[s', a'] \right)$
Asynchronous VI for Deterministic RL

initialize $Q[S, A]$ arbitrarily
observe current state s

repeat forever:
- select and carry out an action a
- observe reward r and state s'

What do we know now?
Asynchronous VI for Deterministic RL

initialize $Q[S, A]$ arbitrarily
observe current state s

repeat forever:
 select and carry out an action a
 observe reward r and state s'
 $Q[s, a] := r + \gamma \max_{a'} Q[s', a']$
 $s := s'$
Suppose we have a sequence of values:

\[v_1, v_2, v_3, \ldots \]

and want a running estimate of the average of the first \(k \) values:

\[A_k = \frac{v_1 + \cdots + v_k}{k} \]
Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}$$
Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k} = \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k =$$
Temporal Differences (cont)

Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}$$

$$= \frac{(k - 1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k(v_k - A_{k-1})$$

“TD formula”
Temporal Differences (cont)

Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k} = \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k = A_{k-1} + \alpha_k (v_k - A_{k-1})$$

“TD formula”

Often we use this update with α fixed.
Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{\sum_{i=1}^{k} v_i}{k}$$

$$= \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k(v_k - A_{k-1})$$

“TD formula”

Often we use this update with α fixed.

We can guarantee convergence to average if
Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}$$

$$= \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k(v_k - A_{k-1})$$

“TD formula”

Often we use this update with α fixed.

We can guarantee convergence to average if

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$
Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}$$

$$= \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k (v_k - A_{k-1})$$

“TD formula”

Often we use this update with α fixed.

We can guarantee convergence to average if

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

E.g., $\alpha_k = 10/(9 + k)$ treats more recent experiences more, but converges to average.
Idea: store $Q[State, Action]$; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
Q-learning

- **Idea**: store $Q[State, Action]$; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update $Q[s, a]$.
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

 $$Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$$

which can be used in the TD formula giving:
Q-learning

- **Idea:** store $Q[State, Action]$; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update $Q[s, a]$.
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

 $$r + \gamma \max_{a'} Q[s', a']$$

 which can be used in the TD formula giving:
Q-learning

- **Idea:** store $Q[State, Action]$; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).

- Suppose the agent has an experience $\langle s, a, r, s' \rangle$

- This provides one piece of data to update $Q[s, a]$.

- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

 $$r + \gamma \max_{a'} Q[s', a']$$

 which can be used in the TD formula giving:

 $$Q[s, a] := Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)$$
Q-learning

initialize $Q[S, A]$ arbitrarily
observe current state s

repeat forever:
 select and carry out an action a
 observe reward r and state s'
 $Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$
 $s := s'$
Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.

But what should the agent do?

- **exploit**: when in state \(s \),

- **explore**:
Properties of Q-learning

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.

- But what should the agent do?
 - exploit: when in state s, select an action that maximizes $Q[s, a]$
 - explore: select another action
The ϵ-greedy strategy: choose random action with probability ϵ & choose a best action with probability $1 - \epsilon$.

"optimism in the face of uncertainty": initialize Q to values that encourage exploration.

"upper confidence bounds" - take into account average + variance.
Exploration Strategies

- The ϵ-greedy strategy: choose random action with probability ϵ & choose a best action with probability $1 - \epsilon$.
- Softmax action selection: in state s, choose a with probability

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is the temperature.
Exploration Strategies

- The ϵ-greedy strategy: choose random action with probability ϵ & choose a best action with probability $1 - \epsilon$.
- Softmax action selection: in state s, choose a with probability

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is the temperature.
- “optimism in the face of uncertainty”: initialize Q to values that encourage exploration.
The ϵ-greedy strategy: choose random action with probability ϵ & choose a best action with probability $1 - \epsilon$.

Softmax action selection: in state s, choose a with probability

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is the temperature.

“optimism in the face of uncertainty”: initialize Q to values that encourage exploration.

“upper confidence bounds” - take into account average + variance.
Exploration Strategies

- The ϵ-greedy strategy: choose random action with probability ϵ & choose a best action with probability $1 - \epsilon$.

- Softmax action selection: in state s, choose a with probability

$$
\frac{e^{Q(s,a)/\tau}}{\sum_a e^{Q(s,a)/\tau}}
$$

where $\tau > 0$ is the temperature.

- “optimism in the face of uncertainty”: initialize Q to values that encourage exploration.

- “upper confidence bounds” - take into account average + variance

- Maintain a stochastic policy (distribution over actions)
Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
 - An agent can make better use of the data by

©D. Poole and A. Mackworth 2019
Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
 - An agent can make better use of the data by
 - remember previous experiences and use these to update model (action replay)
 - building a model, and using MDP methods to determine optimal policy.
 - doing multi-step backups

- It learns separately for each state.
Evaluating Reinforcement Learning Algorithms

The diagram shows the accumulated reward over the number of steps (in thousands) for different algorithms. The x-axis represents the number of steps (in thousands), while the y-axis shows the accumulated reward. Several lines are plotted to represent different algorithms, indicating how their performance changes over time.
On-policy Learning

- Q-learning does **off-policy learning**: it learns the value of an optimal policy, no matter what it does.
- This could be bad if
On-policy Learning

- Q-learning does **off-policy learning**: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- **On-policy learning** learns the value of the policy being followed.
- e.g., act greedily 80% of the time and act randomly 20% of the time
- Why?
On-policy Learning

- Q-learning does **off-policy learning**: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- **On-policy learning** learns the value of the policy being followed.
 e.g., act greedily 80% of the time and act randomly 20% of the time
- Why? If the agent is actually going to explore, it may be better to optimize the actual policy it is going to do.
- SARSA uses the experience $\langle s, a, r, s', a' \rangle$ to update $Q[s, a]$.

©D. Poole and A. Mackworth 2019
Artificial Intelligence, Lecture 12.1 18 / 33
initialize $Q[S, A]$ arbitrarily
observe current state s
select action a

repeat forever:
carry out action a
observe reward r and state s'
select action a' using a policy based on Q

$Q[s, a] :=$
initialize $Q[S, A]$ arbitrarily
observe current state s
select action a
repeat forever:
 carry out action a
 observe reward r and state s'
 select action a' using a policy based on Q
 $Q[s, a] := Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a])$
 $s := s'$
 $a := a'$
Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily

$E = \{\}$

observe current state s

select action a

repeat forever:

- carry out action a
- observe reward r and state s'

$$E := E \cup \{\langle s, a, r, s' \rangle\}$$

$$Q[s, a] := \ldots$$
Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily
$E = \{\}$
observe current state s
select action a
repeat forever:
 carry out action a
 observe reward r and state s'
 $E := E \cup \{\langle s, a, r, s'\rangle\}$
 $Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$
repeat for a while:
 select $\langle s_1, a_1, r_1, s'_1 \rangle \in E$
 $Q[s_1, a_1] := \ldots$
Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily
$E = \{\}$
observe current state s
select action a

repeat forever:
 carry out action a
 observe reward r and state s'
 $E := E \cup \{\langle s, a, r, s' \rangle\}$
 $Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$

repeat for a while:
 select $\langle s_1, a_1, r_1, s'_1 \rangle \in E$
 $Q[s_1, a_1] := Q[s_1, a_1] + \alpha (r_1 + \gamma \max_{a'_1} Q[s'_1, a'_1] - Q[s_1, a_1])$
 $s := s'$
 $a := a'$
Model-based reinforcement learning uses the experiences in a more effective manner.

It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.
Model-based reinforcement learning uses the experiences in a more effective manner.

It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.

Idea: learn the MDP and interleave acting and planning.
Model-based Reinforcement Learning

- Model-based reinforcement learning uses the experiences in a more effective manner.
- It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.
- Idea: learn the MDP and interleave acting and planning.
- After each experience, update probabilities and the reward, then do some steps of asynchronous value iteration.
Model-based learner

Assign Q, R arbitrarily, $C = 0$, $T = 0$

observe current state s

repeat forever:

select and carry out action a

observe reward r and state s'
Model-based learner

Assign Q, R arbitrarily, $C = 0$, $T = 0$

observe current state s

repeat forever:

select and carry out action a
observe reward r and state s'

\[
T[s, a, s'] := T[s, a, s'] + 1
\]

\[
C[s, a] := C[s, a] + 1
\]

\[
R[s, a] := R[s, a] + (r - R[s, a])/C[s, a]
\]
Model-based learner

Assign Q, R arbitrarily, $C = 0$, $T = 0$

observe current state s

repeat forever:
- select and carry out action a
- observe reward r and state s'
- $T[s, a, s'] := T[s, a, s'] + 1$
- $C[s, a] := C[s, a] + 1$
- $R[s, a] := R[s, a] + (r - R[s, a])/C[s, a]$

repeat for a while:
- select state s_1, action a_1

$Q[s_1, a_1] :=$
Model-based learner

Assign Q, R arbitrarily, $C = 0$, $T = 0$

observe current state s

repeat forever:

select and carry out action a

observe reward r and state s'

$T[s, a, s'] := T[s, a, s'] + 1$

$C[s, a] := C[s, a] + 1$

$R[s, a] := R[s, a] + (r - R[s, a]) / C[s, a]$

repeat for a while:

select state s_1, action a_1

$Q[s_1, a_1] := R[s_1, a_1] + \sum_{s_2} \frac{T[s_1, a_1, s_2]}{C[s_1, a_1]} \left(\gamma_{\max_{a_2} Q[s_2, a_2]} \right)$

$s := s'$
Model-based learner

Assign Q, R arbitrarily, $C = 0$, $T = 0$

observe current state s

repeat forever:

select and carry out action a

observe reward r and state s'

$T[s, a, s'] := T[s, a, s'] + 1$

$C[s, a] := C[s, a] + 1$

$R[s, a] := R[s, a] + (r - R[s, a])/C[s, a]$

repeat for a while:

select state s_1, action a_1

$Q[s_1, a_1] := R[s_1, a_1] + \sum_{s_2} \frac{T[s_1, a_1, s_2]}{C[s_1, a_1]} \left(\gamma \max_{a_2} Q[s_2, a_2] \right)$

$s := s'$

What goes wrong with this?
Usually we don’t want to reason in terms of states, but in terms of features.

In state-based methods, information about one state cannot be used by similar states.

If there are too many parameters to learn, it takes too long.

Idea: Express the value (Q) function as a function of the features. Most typical is a linear function of the features, or a neural network.
Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality
Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

\[x := x - \eta \frac{df}{dx} \]

where η is the step size
Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

$$x := x - \eta \frac{df}{dx}$$

where η is the step size
Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

\[x := x - \eta \frac{df}{dx} \]

where η is the step size

To find a local minimum of real-valued function $f(x_1, \ldots, x_n)$:

- assign arbitrary values to x_1, \ldots, x_n
- repeat:
 - for each x_i

\[x_i := \]
Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

\[
x := x - \eta \frac{df}{dx}
\]

where η is the step size

To find a local minimum of real-valued function $f(x_1, \ldots, x_n)$:

- assign arbitrary values to x_1, \ldots, x_n
- repeat:
 - for each x_i

 \[
x_i := x_i - \eta \frac{\partial f}{\partial x_i}
\]
Review: Linear Regression

- A linear function of variables x_1, \ldots, x_n is of the form
 \[f^\overline{w}(x_1, \ldots, x_n) = w_0 + w_1 x_1 + \cdots + w_n x_n \]
 $\overline{w} = \langle w_0, w_1, \ldots, w_n \rangle$ are weights. (Let $x_0 = 1$).

- Given a set E of examples. Example e has input $x_i = e_i$ for each i and observed value, o_e:
 \[Error_E(\overline{w}) = \sum_{e \in E} (o_e - f^\overline{w}(e_1, \ldots, e_n))^2 \]

- Minimizing the error using gradient descent, each example should update w_i using:
 \[w_i := \]
A linear function of variables x_1, \ldots, x_n is of the form

$$f^\overline{w}(x_1, \ldots, x_n) = w_0 + w_1 x_1 + \cdots + w_n x_n$$

$\overline{w} = \langle w_0, w_1, \ldots, w_n \rangle$ are weights. (Let $x_0 = 1$).

Given a set E of examples.
Example e has input $x_i = e_i$ for each i and observed value, o_e:

$$\text{Error}_E(\overline{w}) = \sum_{e \in E} (o_e - f^\overline{w}(e_1, \ldots, e_n))^2$$

Minimizing the error using gradient descent, each example should update w_i using:

$$w_i := w_i - \eta \frac{\partial \text{Error}_E(\overline{w})}{\partial w_i}$$
Given E: set of examples over n features
each example e has inputs (e_1, \ldots, e_n) and output o_e:
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
repeat:
 For each example e in E:
 let $\delta = o_e - f^\overline{w}(e_1, \ldots, e_n)$
 For each weight w_i:
 $w_i := w_i + \eta \delta e_i$
SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_1, \ldots, F_n are the features of the state and the action.
- So $Q_w(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a)$
- An experience $\langle s, a, r, s', a' \rangle$ provides the “example”:
 - old predicted value:
 - new “observed” value:
SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose \(F_1, \ldots, F_n \) are the features of the state and the action.
- So \(Q_w(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a) \)
- An experience \(\langle s, a, r, s', a' \rangle \) provides the “example”:
 - old predicted value: \(Q_w(s, a) \)
 - new “observed” value:
SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_1, \ldots, F_n are the features of the state and the action.
- So $Q_w(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a)$
- An experience $\langle s, a, r, s', a' \rangle$ provides the “example”:
 - old predicted value: $Q_w(s, a)$
 - new “observed” value: $r + \gamma Q_w(s', a')$
- Treat $r + \gamma Q_w(s', a')$ as a new training example for $Q(s, a)$ in linear regression (or other supervised learning algorithm).
Given γ: discount factor; η: step size
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s'
select action a' (using a policy based on $Q_{\overline{w}}$)
SARSA with linear function approximation

Given γ: discount factor; η: step size
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
observe current state s
select action a
repeat forever:
 carry out action a
 observe reward r and state s'
 select action a' (using a policy based on $Q_{\overline{w}}$)
 let $\delta = r + \gamma Q_{\overline{w}}(s', a') - Q_{\overline{w}}(s, a)$
 $w_i := w_i + \eta \delta F_i(s, a)$
 $s := s'$
 $a := a'$
SARSA with linear function approximation

Given γ: discount factor; η: step size
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
observe current state s
select action a
repeat forever:
 carry out action a
 observe reward r and state s'
 select action a' (using a policy based on $Q_{\overline{w}}$)
 let $\delta = r + \gamma Q_{\overline{w}}(s', a') - Q_{\overline{w}}(s, a)$
For $i = 0$ to n
 $w_i := w_i + \eta \delta F_i(s, a)$
SARSA with linear function approximation

Given γ: discount factor; η: step size
Assign weights $\overline{w} = \langle w_0, \ldots, w_n \rangle$ arbitrarily
observe current state s
select action a
repeat forever:
 carry out action a
 observe reward r and state s'
 select action a' (using a policy based on $Q_{\overline{w}}$)
 let $\delta = r + \gamma Q_{\overline{w}}(s', a') - Q_{\overline{w}}(s, a)$
 For $i = 0$ to n
 $w_i := w_i + \eta \delta F_i(s, a)$
 $s := s'$
 $a := a'$
Example Features

- $F_1(s, a) = 1$ if a goes from state s into a monster location and is 0 otherwise.
- $F_2(s, a) = 1$ if a goes into a wall, is 0 otherwise.
- $F_3(s, a) = 1$ if a goes toward a prize.
- $F_4(s, a) = 1$ if the agent is damaged in state s and action a takes it toward the repair station.
- $F_5(s, a) = 1$ if the agent is damaged and action a goes into a monster location.
- $F_6(s, a) = 1$ if the agent is damaged.
- $F_7(s, a) = 1$ if the agent is not damaged.
- $F_8(s, a) = 1$ if the agent is damaged and there is a prize in direction a.
- $F_9(s, a) = 1$ if the agent is not damaged and there is a prize in direction a.
Example Features

- $F_{10}(s, a)$ is the distance from the left wall if there is a prize at location P_0, and is 0 otherwise.
- $F_{11}(s, a)$ has the value $4 - x$, where x is the horizontal position of state s if there is a prize at location P_0; otherwise is 0.
- $F_{12}(s, a)$ to $F_{29}(s, a)$ are like F_{10} and F_{11} for different combinations of the prize location and the distance from each of the four walls.

For the case where the prize is at location P_0, the y-distance could take into account the wall.
This algorithm tends to overfit to current experiences. “Catastrophic forgetting”.

Solution:
This algorithm tends to overfit to current experiences. “Catastrophic forgetting”.
Solution: remember old $\langle s, a, r, s' \rangle$ experiences and to carry out some steps of action replay
This algorithm tends to overfit to current experiences. “Catastrophic forgetting”.
Solution: remember old \(\langle s, a, r, s' \rangle \) experiences and to carry out some steps of **action replay**

Different function approximations, such as

- a decision tree with a linear function at the leaves (regression tree)
- a neural network

could be used, but they requires a representation of the states and actions.
Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. “Catastrophic forgetting”.
 Solution: remember old $\langle s, a, r, s' \rangle$ experiences and to carry out some steps of action replay

- Different function approximations, such as
 - a decision tree with a linear function at the leaves (regression tree)
 - a neural network

 could be used, but they require a representation of the states and actions.

- Use the policy to do more than one-step lookahead (better estimate of $Q(s', a')$)
Evolutionary Algorithms

Idea:

- maintain a population of controllers
- evaluate each controller by running it in the environment
- at each generation, the best controllers are combined to form a new population of controllers
Evolutionary Algorithms

Idea:

- maintain a population of controllers
- evaluate each controller by running it in the environment
- at each generation, the best controllers are combined to form a new population of controllers

If there are \(n \) states and \(m \) actions, there are \(m^n \) policies.
Evolutionary Algorithms

- Idea:
 - maintain a population of controllers
 - evaluate each controller by running it in the environment
 - at each generation, the best controllers are combined to form a new population of controllers
- If there are n states and m actions, there are m^n policies.
- Experiences are used wastefully: only used to judge the whole controller. They don’t learn after every step.
- Performance is very sensitive to representation of controller.