Often we want our agents to make assumptions rather than doing deduction from their knowledge. For example:

- In **abduction** an agent makes assumptions to explain observations. For example, it hypothesizes what could be wrong with a system to produce the observed symptoms.

- In **default reasoning** an agent makes assumptions of normality to make predictions. For example, the delivery robot may want to assume Mary is in her office, even if it isn’t always true.
Two different tasks use assumption-based reasoning:

- **Design** The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.

- **Recognition** The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can’t select the one they like best. The underlying reality is fixed; the aim is to find out what it is.

Compare: Recognizing a disease with designing a treatment. Designing a meeting time with determining when it is.
The assumption-based framework is defined in terms of two sets of formulae:

- **F** is a set of closed formula called the **facts**. These are formulae that are given as true in the world. We assume F are Horn clauses.

- **H** is a set of formulae called the **possible hypotheses** or **assumables**. Ground instance of the possible hypotheses can be assumed if consistent.
A **scenario** of $\langle F, H \rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.

An **explanation** of g from $\langle F, H \rangle$ is a scenario that, together with F, implies g.

D is an explanation of g if $F \cup D \models g$ and $F \cup D \not\models false$.

A **minimal explanation** is an explanation such that no strict subset is also an explanation.

An **extension** of $\langle F, H \rangle$ is the set of logical consequences of F and a maximal scenario of $\langle F, H \rangle$.
Example

\[a \leftarrow b \land c. \]
\[b \leftarrow e. \]
\[b \leftarrow h. \]
\[c \leftarrow g. \]
\[c \leftarrow f. \]
\[d \leftarrow g. \]
\[false \leftarrow e \land d. \]
\[f \leftarrow h \land m. \]

Assumable \(e, h, g, m, n. \)

- \(\{e, m, n\} \) is a scenario.
- \(\{e, g, m\} \) is not a scenario.
- \(\{h, m\} \) is an explanation for \(a \).
- \(\{e, h, m\} \) is an explanation for \(a \).
- \(\{e, g, h, m\} \) isn’t an explanation.
- \(\{e, h, m, n\} \) is a maximal scenario.
- \(\{h, g, m, n\} \) is a maximal scenario.
There are two strategies for using the assumption-based framework:

- **Default reasoning** Where the truth of \(g \) is unknown and is to be determined. An explanation for \(g \) corresponds to an argument for \(g \).

- **Abduction** Where \(g \) is given, and we are interested in explaining it. \(g \) could be an observation in a recognition task or a design goal in a design task.

Give observations, we typically do abduction, then default reasoning to find consequences.
Computing Explanations

To find assumables to imply the query \(?q_1 \land \ldots \land q_k\):

\[
ac := \text{"yes} \leftarrow q_1 \land \ldots \land q_k\text{"}
\]

repeat

\hspace{1em}select non-assumable atom \(a_i\) from the body of \(ac\);
\hspace{1em}choose clause \(C\) from \(KB\) with \(a_i\) as head;
\hspace{1em}replace \(a_i\) in the body of \(ac\) by the body of \(C\)

until all atoms in the body of \(ac\) are assumable.

To find an explanation of query \(?q_1 \land \ldots \land q_k\):

- find assumables to imply \(?q_1 \land \ldots \land q_k\)
- ensure that no subset of the assumables found implies \(false\)