Local Search (Greedy Descent):

- Maintain an assignment of a value to each variable.
- Repeat:
 - Select a variable to change
 - Select a new value for that variable
- Until a satisfying assignment is found
Local Search for CSPs

- **Aim:** find an assignment with zero unsatisfied constraints.
- Given an assignment of a value to each variable, a conflict is an unsatisfied constraint.
- The goal is an assignment with zero conflicts.
- Heuristic function to be minimized: the number of conflicts.
Greedy Descent Variants

To choose a variable to change and a new value for it:

- Find a variable-value pair that minimizes the number of conflicts.
- Select a variable that participates in the most conflicts. Select a value that minimizes the number of conflicts.
- Select a variable that appears in any conflict. Select a value that minimizes the number of conflicts.
- Select a variable at random. Select a value that minimizes the number of conflicts.
- Select a variable and value at random; accept this change if it doesn’t increase the number of conflicts.
Complex Domains

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.
- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.
- If the domains are continuous, Gradient descent changes each variable proportional to the gradient of the heuristic function in that direction.

The value of variable X_i goes from v_i to

η is the step size.
Complex Domains

- When the domains are small or unordered, the neighbors of an assignment can correspond to choosing another value for one of the variables.

- When the domains are large and ordered, the neighbors of an assignment are the adjacent values for one of the variables.

- If the domains are continuous, **Gradient descent** changes each variable proportional to the gradient of the heuristic function in that direction. The value of variable X_i goes from v_i to $v_i - \eta \frac{\partial h}{\partial X_i}$. η is the step size.
Problems with Greedy Descent

- a local minimum that is not a global minimum
- a plateau where the heuristic values are uninformative
- a ridge is a local minimum where \(n \)-step look-ahead might help

© D. Poole and A. Mackworth 2010
Randomized Algorithms

Consider two methods to find a minimum value:

▶ Greedy descent, starting from some position, keep moving down & report minimum value found
▶ Pick values at random & report minimum value found

Which do you expect to work better to find a global minimum?

Can a mix work better?
Randomized Greedy Descent

As well as downward steps we can allow for:

- **Random steps:** move to a random neighbor.
- **Random restart:** reassign random values to all variables.

Which is more expensive computationally?
1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

- Which method would most easily find the global minimum?
- What happens in hundreds or thousands of dimensions?
- What if different parts of the search space have different structure?
Stochastic local search is a mix of:

- Greedy descent: move to a lowest neighbor
- Random walk: taking some random steps
- Random restart: reassigning values to all variables
Random Walk

Variants of random walk:

- When choosing the best variable-value pair, randomly sometimes choose a random variable-value pair.
- When selecting a variable then a value:
 - Sometimes choose any variable that participates in the most conflicts.
 - Sometimes choose any variable that participates in any conflict (a red node).
 - Sometimes choose any variable.
- Sometimes choose the best value and sometimes choose a random value.
How can you compare three algorithms when
- one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn’t solve the rest
- one solves the problem in 100% of the cases, but slowly?
Comparing Stochastic Algorithms

How can you compare three algorithms when
- one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
- one solves 60% of the cases reasonably quickly but doesn’t solve the rest
- one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time, and mode run time don’t make much sense.
Runtime Distribution

- Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.
Variant: Simulated Annealing

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- If it isn’t an improvement, adopt it probabilistically depending on a temperature parameter, T.
 - With current assignment n and proposed assignment n' we move to n' with probability $e^{(h(n') - h(n))/T}$
- Temperature can be reduced.

Probability of accepting a change:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1-worse</th>
<th>2-worse</th>
<th>3-worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.91</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
<td>0.02</td>
<td>0.0003</td>
<td>0.000006</td>
</tr>
<tr>
<td>0.1</td>
<td>0.00005</td>
<td>2×10^{-9}</td>
<td>9×10^{-14}</td>
</tr>
</tbody>
</table>
Variant: Simulated Annealing

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- If it isn’t an improvement, adopt it probabilistically depending on a temperature parameter, T.

 ▶ With current assignment n and proposed assignment n' we move to n' with probability $e^{(h(n')-h(n))/T}$

- Temperature can be reduced.

Probability of accepting a change:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1-worse</th>
<th>2-worse</th>
<th>3-worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.91</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
<td>0.02</td>
<td>0.0003</td>
<td>0.000006</td>
</tr>
<tr>
<td>0.1</td>
<td>0.00005</td>
<td>2×10^{-9}</td>
<td>9×10^{-14}</td>
</tr>
</tbody>
</table>
To prevent cycling we can maintain a tabu list of the k last assignments.

Don’t allow an assignment that is already on the tabu list.

If $k = 1$, we don’t allow an assignment of to the same value to the variable chosen.

We can implement it more efficiently than as a list of complete assignments.

It can be expensive if k is large.
A total assignment is called an **individual**.

- **Idea:** maintain a population of k individuals instead of one.
- At every stage, update each individual in the population.
- Whenever an individual is a solution, it can be reported.
- Like k restarts, but uses k times the minimum number of steps.
Like parallel search, with k individuals, but choose the k best out of all of the neighbors.

When $k = 1$, it is greedy descent.

When $k = \infty$, it is breadth-first search.

The value of k lets us limit space and parallelism.
Stochastic Beam Search

- Like beam search, but it probabilistically chooses the k individuals at the next generation.
- The probability that a neighbor is chosen is proportional to its heuristic value.
- This maintains diversity amongst the individuals.
- The heuristic value reflects the fitness of the individual.
- Like asexual reproduction: each individual mutates and the fittest ones survive.
Like stochastic beam search, but pairs of individuals are combined to create the offspring:

For each generation:
- Randomly choose pairs of individuals where the fittest individuals are more likely to be chosen.
- For each pair, perform a cross-over: form two offspring each taking different parts of their parents.
- Mutate some values.

Stop when a solution is found.
Crossover

Given two individuals:

\[X_1 = a_1, X_2 = a_2, \ldots, X_m = a_m \]

\[X_1 = b_1, X_2 = b_2, \ldots, X_m = b_m \]

Select \(i \) at random.

Form two offspring:

\[X_1 = a_1, \ldots, X_i = a_i, X_{i+1} = b_{i+1}, \ldots, X_m = b_m \]

\[X_1 = b_1, \ldots, X_i = b_i, X_{i+1} = a_{i+1}, \ldots, X_m = a_m \]

The effectiveness depends on the ordering of the variables.

Many variations are possible.