Learning Objectives

At the end of the class you should be able to:

- explain how cycle checking and multiple-path pruning can improve efficiency of search algorithms
- explain the complexity of cycle checking and multiple-path pruning for different search algorithms
- justify why the monotone restriction is useful for A^* search
- predict whether forward, backward, bidirectional or island-driven search is better for a particular problem
- demonstrate how dynamic programming works for a particular problem
Summary of Search Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Frontier Selection</th>
<th>Complete</th>
<th>Halts</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>Last node added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breadth-first</td>
<td>First node added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristic depth-first</td>
<td>Local min $h(p)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best-first</td>
<td>Global min $h(p)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest-cost-first</td>
<td>Minimal $cost(p)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A^*</td>
<td>Minimal $f(p)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete — if there a path to a goal, it can find one, even on infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Frontier Selection</th>
<th>Complete</th>
<th>Halts</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>Last node added</td>
<td>No</td>
<td>No</td>
<td>Linear</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>First node added</td>
<td>Yes</td>
<td>No</td>
<td>Exp</td>
</tr>
<tr>
<td>Heuristic depth-first</td>
<td>Local min $h(p)$</td>
<td>No</td>
<td>No</td>
<td>Linear</td>
</tr>
<tr>
<td>Best-first</td>
<td>Global min $h(p)$</td>
<td>No</td>
<td>No</td>
<td>Exp</td>
</tr>
<tr>
<td>Lowest-cost-first</td>
<td>Minimal $\text{cost}(p)$</td>
<td>Yes</td>
<td>No</td>
<td>Exp</td>
</tr>
<tr>
<td>A^*</td>
<td>Minimal $f(p)$</td>
<td>Yes</td>
<td>No</td>
<td>Exp</td>
</tr>
</tbody>
</table>

Complete — if there a path to a goal, it can find one, even on infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path
A searcher can prune a path that ends in a node already on the path, without removing an optimal solution.

In depth-first methods, checking for cycles can be done in ________ time in path length.

For other methods, checking for cycles can be done in ________ time in path length.

Does cycle checking mean the algorithms halt on finite graphs?
Multiple-Path Pruning

- Multiple path pruning: prune a path to node n that the searcher has already found a path to.
- What needs to be stored?
- How does multiple-path pruning compare to cycle checking?
- Do search algorithms with multiple-path pruning always halt on finite graphs?
- What is the space & time overhead of multiple-path pruning?
- Can multiple-path pruning prevent an optimal solution being found?
Problem: what if a subsequent path to n is shorter than the first path to n?
Problem: what if a subsequent path to n is shorter than the first path to n?

- remove all paths from the frontier that use the longer path.
- change the initial segment of the paths on the frontier to use the shorter path.
- ensure this doesn’t happen. Make sure that the shortest path to a node is found first.
Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p' on the frontier.

Suppose path p' ends at node n'.

p was selected before p', so:
Multiple-Path Pruning & \(A^* \)

- Suppose path \(p \) to \(n \) was selected, but there is a shorter path to \(n \). Suppose this shorter path is via path \(p' \) on the frontier.
- Suppose path \(p' \) ends at node \(n' \).
- \(p \) was selected before \(p' \), so:
 \[
 \text{cost}(p) + h(n) \leq \text{cost}(p') + h(n').
 \]
- Suppose \(\text{cost}(n', n) \) is the actual cost of a path from \(n' \) to \(n \).
 The path to \(n \) via \(p' \) is shorter than \(p \) so:
Multiple-Path Pruning & A^*

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p' on the frontier.
- Suppose path p' ends at node n'.
- p was selected before p', so:
 \[\text{cost}(p) + h(n) \leq \text{cost}(p') + h(n'). \]
- Suppose $\text{cost}(n', n)$ is the actual cost of a path from n' to n. The path to n via p' is shorter than p so:
 \[\text{cost}(p') + \text{cost}(n', n) < \text{cost}(p). \]
 \[\text{cost}(n', n) < \]
Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p' on the frontier.

Suppose path p' ends at node n'.

p was selected before p', so:

$$\text{cost}(p) + h(n) \leq \text{cost}(p') + h(n').$$

Suppose $\text{cost}(n', n)$ is the actual cost of a path from n' to n. The path to n via p' is shorter than p so:

$$\text{cost}(p') + \text{cost}(n', n) < \text{cost}(p).$$

$$\text{cost}(n', n) < \text{cost}(p) - \text{cost}(p') \leq$$
Suppose path \(p \) to \(n \) was selected, but there is a shorter path to \(n \). Suppose this shorter path is via path \(p' \) on the frontier.

Suppose path \(p' \) ends at node \(n' \).

\(p \) was selected before \(p' \), so:
\[
\text{cost}(p) + h(n) \leq \text{cost}(p') + h(n').
\]

Suppose \(\text{cost}(n', n) \) is the actual cost of a path from \(n' \) to \(n \). The path to \(n \) via \(p' \) is shorter than \(p \) so:
\[
\text{cost}(p') + \text{cost}(n', n) < \text{cost}(p).
\]

\[
\text{cost}(n', n) < \text{cost}(p) - \text{cost}(p') \leq h(n') - h(n).
\]

We can ensure this doesn’t occur if
\[
|h(n') - h(n)| \leq \text{cost}(n', n).
\]
Monotone Restriction

- Heuristic function h satisfies the monotone restriction if $|h(m) - h(n)| \leq cost(m, n)$ for every arc $\langle m, n \rangle$.
- If h satisfies the monotone restriction, A^* with multiple path pruning always finds the shortest path to a goal.
- This is a strengthening of the admissibility criterion.
The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.

- **Forward branching factor:** number of arcs out of a node.
- **Backward branching factor:** number of arcs into a node.

Search complexity is b^n. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.

- Note: when graph is dynamically constructed, the backwards graph may not be available.
Bidirectional Search

- Idea: search backward from the goal and forward from the start simultaneously.
- This wins as $2b^{k/2} \ll b^k$. This can result in an exponential saving in time and space.
- The main problem is making sure the frontiers meet.
- This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.
Island Driven Search

- **Idea:** find a set of islands between s and g.

\[s \rightarrow i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_{m-1} \rightarrow g \]

There are m smaller problems rather than 1 big problem.

- This can win as $mb^k/m \ll b^k$.
- The problem is to identify the islands that the path must pass through. It is difficult to guarantee optimality.
- The subproblems can be solved using islands \Rightarrow hierarchy of abstractions.
Idea: for statically stored graphs, build a table of $dist(n)$ the actual distance of the shortest path from node n to a goal. This can be built backwards from the goal:

$$
 dist(n) = \begin{cases}
 0 & \text{if is_goal}(n), \\
 \min_{\langle n, m \rangle \in A} (|\langle n, m \rangle| + dist(m)) & \text{otherwise}.
 \end{cases}
$$

This can be used locally to determine what to do.

There are two main problems:

- It requires enough space to store the graph.
- The $dist$ function needs to be recomputed for each goal.