
Learning Objectives

At the end of the class you should be able to:

describe the mapping between relational probabilistic models
and their groundings

read plate notation

build a relational probabilistic model for a domain
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Relational Probabilistic Models

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Relational Probabilistic Models

Often we want random variables for combinations of individual in
populations

build a probabilistic model before knowing the individuals

learn the model for one set of individuals

apply the model to new individuals

allow complex relationships between individuals

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 3



Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with
the same averages. Why should we make different predictions?

How can we make predictions when the values of properties
Student and Course are individuals?
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From Relations to Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.1 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S is a logical variable representing students
C is a logical variable representing courses
the set of all individuals of some type is called a population
I (S), Gr(S ,C ), D(C ) are parametrized random variables

for every student s, there is a random variable I (s)
for every course c , there is a random variable D(c)
for every student s and course c pair there is a random
variable Gr(s, c)
all instances share the same structure and parameters
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Plate Notation for Learning Parameters

T

H(T)

!

H(t1)

!

H(t2) H(tn)...

tosses t1, t2…tn

T is a logical variable representing tosses of a thumb tack

H(t) is a Boolean variable that is true if toss t is heads.

θ is a random variable representing the probability of heads.

Range of θ is {0.0, 0.01, 0.02, . . . , 0.99, 1.0} or interval [0, 1].

P(H(ti )=true|θ=p) =

p

H(ti ) is independent of H(tj) (for i 6= j) given θ: i.i.d. or
independent and identically distributed.
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Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X
Parameters can be drawn as plates.

Each logical variable is typed with a population. X : person

A population is a set of individuals.

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: an instance
of each random variable for each assignment of an individual
to a logical variable. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common ancestors
and descendants).
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Parametrized Bayesian networks / Plates

X

r(X)

Individuals:
i1,...,ik

r(i1) r(ik)...+

Parametrized Bayes Net:

Bayes Net
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Parametrized Bayesian networks / Plates (2)

X

r(X)

Individuals:
i1,...,ik

s(i1) s(ik)...s(X)

t

q

r(i1) r(ik)...
q

t

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 13



Creating Dependencies

Instances of plates are independent, except by common parents or
children.

X
r(X)

q

r(i1) r(ik)....
q

Common
Parents

X
r(X)

q

r(i1) r(ik)....
q

Observed
Children
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Overlapping plates

Person

likes

young
genre

Movie

l(s,r)

y(s)

y(c)

y(k) l(c,r)

l(k,r)

l(s,t)

l(c,t)

l(k,t)

g(r) g(t)

Relations: likes(P,M), young(P), genre(M)
likes is Boolean, young is Boolean,
genre has range {action, romance, family}

Three people: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)
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Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has range
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains:

100,000 likes + 1,000 age + 100 genre
= 101,100

random variables

How many numbers need to be specified to define the
probabilities required?
1 for young , 2 for genre, 6 for likes = 9 total.
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Representing Conditional Probabilities

P(likes(P,M)|young(P), genre(M)) — parameter sharing —
individuals share probability parameters.

P(happy(X )|friend(X ,Y ),mean(Y )) — needs aggregation
— happy(a) depends on an unbounded number of parents.

There can be more structure about the individuals. . .
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Example: Aggregation

x

Shot(x,y)

Has_motive(x,y)

Someone_shot(y) y

Has_opportunity(x,y)

Has_gun(x)
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Exercise #1

For the relational probabilistic model:

X

cb

a

Suppose the the population of X is n and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers need to be specified for a tabular
representation of the conditional probabilities?
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Exercise #2

For the relational probabilistic model:

X

bc

a

d

Suppose the the population of X is n and all variables are Boolean.

(a) Which of the conditional probabilities cannot be defined as a
table?

(b) How many random variables are in the grounding?

(c) How many numbers need to be specified for a tabular
representation of those conditional probabilities that can be
defined using a table? (Assume an aggregator is an “or”
which uses no numbers).
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Exercise #3

For the relational probabilistic model:

Movie

Person

saw
urban

alt

profit

Suppose the population of Person is n and the population of
Movie is m, and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers are required to specify the conditional
probabilities? (Assume an “or” is the aggregator and the rest
are defined by tables).
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Hierarchical Bayesian Model

Example: SXH is true when patient X is sick in hospital H.
We want to learn the probability of Sick for each hospital.
Where do the prior probabilities for the hospitals come from?

φH

α1

X H

SXH

α2

φ1 φ2 φk

α1

...

α2

S11 S12

...

S21 S22

...

S1k

...

(a) (b)
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Example: Language Models

Unigram Model:

D
I

W(D,I)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (D, I ) is the I ’th word in document D. The range of W is
the set of all words.
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Example: Language Models

Topic Mixture:

D
I

W(D,I)T(D)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (d , i) is the i ’th word in document d . The range of W is
the set of all words.

T (d) is the topic of document d . The range of T is the set of
all topics.
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Example: Language Models

Mixture of topics, bag of words (unigram):

D
T I

W(D,I)S(T,D)

D is the set of all documents

I is the set of indexes of words in the document. I ranges
from 1 to the number of words in the document.

T is the set of all topics

W (d , i) is the i ’th word in document d . The range of W is
the set of all words.

S(t, d) is true if topic t is a subject of document d . S is
Boolean.
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Example: Language Models

Mixture of topics, set of words:

D
T W

A(W,D)S(T,D)

D is the set of all documents

W is the set of all words.

T is the set of all topics

Boolean A(w , d) is true if word w appears in document d .

Boolean S(t, d) is true if topic t is a subject of document d .

Rephil (Google) has 900,000 topics, 12,000,000 “words”,
350,000,000 links.
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Creating Dependencies: Exploit Domain Structure

....
X

r(X)
r(i1) r(i4)

s(X)

r(i2) r(i3)

s(i1) s(i2) s(i3)
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Predicting students errors

x2 x1
+ y2 y1

z3 z2 z1

X0X1

Y0Y1

Z0Z1Z2

C1C2

Knows_Carry Knows_Add

What if there were multiple digits, problems, students, times?

How can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjy · · · y2 y1

zjz · · · z2 z1

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T

Parametrized Random Variables:

x(D,P), y(D,P),
knows carry(S ,T ), knows add(S ,T ), c(D,P,S ,T ),
z(D,P,S ,T )

Logical variables: digit D, problem P, student S , time T .

Random variables: There is a random variable for each
assignment of a value to D and a value to P in x(D,P). . . .
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Creating Dependencies: Relational Structure

A' A

author(A,P)

author(ai,pj)

collaborators(A,A')

author(ak,pj)

collaborators(ai,ak)

P

∀ai∈A ∀ak∈A ai≠ak∀pj∈P
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Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).
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Example parametrized belief network

interested(X)

ask_question(X)

boring

X:person

P(boring)
∀X P(interested(X )|boring)
∀X P(ask question(X )|interested(X ))
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First-order probabilistic inference

Parametrized
Belief Network

Belief Network

Parametrized
Posterior

Posterior

FOVE

VE

ground ground
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Independent Choice Logic

A language for first-order probabilistic models.

Idea : combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and a logic
program specifies consequences of choices.

Parametrized random variables are represented as logical
atoms, and plates correspond to logical variables.
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Parametric Factors

A parametric factor is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V is a set of parametrized random variables

t is a table representing a factor from the random variables to
the non-negative reals.〈

{X 6= sue}, {interested(X ), boring},

interested boring Val

yes yes 0.001
yes no 0.01

· · ·

〉
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Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

n people
we observe no questions

Eliminate interested :
〈{}, {boring , interested(X )}, t1〉
〈{}, {interested(X )}, t2〉

↓
〈{}, {boring}, (t1 × t2)n〉

(t1 × t2)n is computed point-
wise; we can compute it in time
O(log n).
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Counting Elimination

       int(X)

ask_question(X)

boring

X:person

|people| = n

Eliminate boring :
VE: factor on {int(p1), . . . , int(pn)}
Size is O(dn) where d is size of range of
interested.

Exchangeable: only the number of inter-
ested individuals matters.
Counting Formula:

#interested Value

0 v0
1 v1

. . . . . .
n vn

Complexity: O(nd−1).
[de Salvo Braz et al. 2007] and [Milch et al. 08]
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Potential of Lifted Inference

Reduce complexity:

polynomial −→ logarithmic

exponential −→ polynomial

We need a representation for the intermediate (lifted) factors
that is closed under multiplication and summing out (lifted)
variables.

Still an open research problem.
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Independent Choice Logic

An alternative is a set of ground atomic formulas.

C, the choice space is a set of disjoint alternatives.

F , the facts is a logic program that gives consequences of
choices.

P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼c2 ∧ b1,
e ← f , e ← ∼d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 14.3, Page 53



Semantics of ICL

There is a possible world for each selection of one element
from each alternative.

The logic program together with the selected atoms specifies
what is true in each possible world.

The elements of different alternatives are independent.
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Meaningless Example: Semantics

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼c2 ∧ b1,
e ← f , e ← ∼d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

selection︷ ︸︸ ︷ logic program︷ ︸︸ ︷
w1 |= c1 b1 f d e P(w1) = 0.45
w2 |= c2 b1 ∼f ∼d e P(w2) = 0.27
w3 |= c3 b1 ∼f d ∼e P(w3) = 0.18
w4 |= c1 b2 ∼f d ∼e P(w4) = 0.05
w5 |= c2 b2 ∼f ∼d e P(w5) = 0.03
w6 |= c3 b2 f ∼d e P(w6) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77
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Belief Networks, Decision trees and ICL rules

There is a local mapping from belief networks into ICL.

Ta Fi

SmAl

Le

Re

prob ta : 0.02.
prob fire : 0.01.
alarm← ta ∧ fire ∧ atf .
alarm← ∼ta ∧ fire ∧ antf .
alarm← ta ∧ ∼fire ∧ atnf .
alarm← ∼ta ∧ ∼fire ∧ antnf .
prob atf : 0.5.
prob antf : 0.99.
prob atnf : 0.85.
prob antnf : 0.0001.
smoke ← fire ∧ sf .
prob sf : 0.9.
smoke ← ∼fire ∧ snf .
prob snf : 0.01.
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Belief Networks, Decision trees and ICL rules

Rules can represent decision tree with probabilities:

f t
A

C B

D 0.70.2

0.90.5

0.3

P(e|A,B,C,D)

e ← a ∧ b ∧ h1. P0(h1) = 0.7
e ← a ∧ ∼b ∧ h2. P0(h2) = 0.2
e ← ∼a ∧ c ∧ d ∧ h3. P0(h3) = 0.9
e ← ∼a ∧ c ∧ ∼d ∧ h4. P0(h4) = 0.5
e ← ∼a ∧ ∼c ∧ h5. P0(h5) = 0.3
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Movie Ratings

Person

likes

young
genre

Movie

prob young(P) : 0.4.
prob genre(M, action) : 0.4, genre(M, romance) : 0.3,

genre(M, family) : 0.4.
likes(P,M)← young(P) ∧ genre(M,G ) ∧ ly(P,M,G ).
likes(P,M)← ∼young(P) ∧ genre(M,G ) ∧ lny(P,M,G ).
prob ly(P,M, action) : 0.7.
prob ly(P,M, romance) : 0.3.
prob ly(P,M, family) : 0.8.
prob lny(P,M, action) : 0.2.
prob lny(P,M, romance) : 0.9.
prob lny(P,M, family) : 0.3.
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Aggregation

The relational probabilistic model:

X

a b

Cannot be represented using tables. Why?

This can be represented in ICL by

b ← a(X )&n(X ).

“noisy-or”, where n(X ) is a noise term, {n(c),∼n(c)} ∈ C for
each individual c .

If a(c) is observed for each individual c :

P(b) = 1− (1− p)k

Where p = P(n(X )) and k is the number of a(c) that are
true.
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Example: Multi-digit addition

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T
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ICL rules for multi-digit addition

z(D,P, S ,T ) = V ←
x(D,P) = Vx ∧
y(D,P) = Vy ∧
c(D,P, S ,T ) = Vc ∧
knows add(S ,T ) ∧
¬mistake(D,P,S ,T ) ∧
V is (Vx + Vy + Vc) div 10.

z(D,P,S ,T ) = V ←
knows add(S ,T ) ∧
mistake(D,P, S ,T ) ∧
selectDig(D,P,S ,T ) = V .

z(D,P,S ,T ) = V ←
¬knows add(S ,T ) ∧
selectDig(D,P,S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P, S ,T ),mistake(D,P,S ,T )}
∀DPST{selectDig(D,P, S ,T ) = V | V ∈ {0..9}}
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Learning Relational Models with Hidden Variables

User Item Date Rating

Sam Terminator 2009-03-22 5
Sam Rango 2011-03-22 4
Sam The Holiday 2010-12-25 1
Chris The Holiday 2010-12-25 4
. . . . . . . . .

Netflix: 500,000 users, 17,000 movies, 100,000,000 ratings.

rui = rating of user u on item i
r̂ui = predicted rating of user u on item i
D = set of (u, i , r) tuples in the training set (ignoring Date)
Sum squares error:∑

(u,i ,r)∈D

(r̂ui − r)2
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Learning Relational Models with Hidden Variables

Predict same for all ratings: r̂ui = µ

Adjust for each user and item: r̂ui = µ+ bi + cu
One hidden feature: fi for each item and gu for each user

r̂ui = µ+ bi + cu + figu

k hidden features:

r̂ui = µ+ bi + cu +
∑
k

fikgku

Regularize

minimize
∑

(u,i)∈K

(µ+ bi + cu +
∑
k

fikgku − rui )
2

+ λ(b2
i + c2

u +
∑
k

f 2
ik + g2

ku)
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Parameter Learning using Gradient Descent

µ← average rating
assign f [i , k], g [k , u] randomly
assign b[i ], c[u] arbitrarily
repeat:

for each (u, i , r) ∈ D:
e ← µ+ b[i ] + c[u] +

∑
k f [i , k] ∗ g [k, u]− r

b[i ]← b[i ]− η ∗ e − η ∗ λ ∗ b[i ]
c[u]← c[u]− η ∗ e − η ∗ λ ∗ c[u]
for each feature k:

f [i , k]← f [i , k]− η ∗ e ∗ g [k , u]− η ∗ λ ∗ f [i , k]
g [k , u]← g [k, u]− η ∗ e ∗ f [i , k]− η ∗ λ ∗ g [k , u]
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