Relational Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Relational Learning

- Often the values of properties are not meaningful values but names of individuals.
- It is the properties of these individuals and their relationship to other individuals that needs to be learned.
- Relational learning has been studied under the umbrella of "Inductive Logic Programming" as the representations are often logic programs.

Example: trading agent

What does Joe like?

Individual	Property	Value
joe	likes	resort_14
joe	dislikes	resort_35
resort_14	type	resort
resort_14	near	beach_18
beach_18	type	beach
beach_18	covered_in	WS
ws	type	sand
WS	color	white

Values of properties may be meaningless names.

Example: trading agent

Possible theory that could be learned:

```
prop(joe, likes, R) \leftarrow
prop(R, type, resort) \land
prop(R, near, B) \land
prop(B, type, beach) \land
prop(B, covered\_in, S) \land
prop(S, type, sand).
```

Joe likes resorts that are near sandy beaches.

Inductive Logic Programming: Inputs and Output

- A is a set of atoms whose definitions the agent is learning.
- E⁺ is a set of ground atoms observed true: positive examples
- E⁻ is the set of ground atoms observed to be false:
 negative examples
- B is a set of clauses: background knowledge
- H is a space of possible hypotheses. H can be the set of all logic programs defining A.

The aim is to find a simplest hypothesis $h \in H$ such that

$$B \wedge h \models E^+$$
 and $B \wedge h \not\models E^-$

Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2 . H_2 is then more specific than H_1 .

Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2 .

 H_2 is then more specific than H_1 .

Consider the logic programs:

- $a \leftarrow b$.
- $a \leftarrow b \land c$.
- $a \leftarrow b$. $a \leftarrow c$.
- a.

Which is the most general? Least general?

Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2 .

 H_2 is then more specific than H_1 .

Consider the logic programs:

- $a \leftarrow b$.
- $a \leftarrow b \land c$.
- $a \leftarrow b$. $a \leftarrow c$.
- a.

Which is the most general? Least general?

• For target relation $A = \{t(X_1, ..., X_n)\}$ what is the most general logic program?

Hypothesis H_1 is more general than H_2 if H_1 logically implies H_2 . H_2 is then more specific than H_1 .

Consider the logic programs:

- $a \leftarrow b$.
- $a \leftarrow b \land c$.
- $a \leftarrow b$. $a \leftarrow c$.
- a.

Which is the most general? Least general?

- For target relation $A = \{t(X_1, ..., X_n)\}$ what is the most general logic program?
- What is the least general logic program that is consistent with E^+ and E^- ?

Single target relation: $A = \{t(X_1, ..., X_n)\}.$ Two main approaches:

 Start with the most general hypothesis and make it more complicated to fit the data.

Single target relation: $A = \{t(X_1, ..., X_n)\}.$ Two main approaches:

 Start with the most general hypothesis and make it more complicated to fit the data. Most general hypothesis is

$$t(X_1,\ldots,X_n).$$

Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.

Single target relation: $A = \{t(X_1, ..., X_n)\}.$ Two main approaches:

 Start with the most general hypothesis and make it more complicated to fit the data. Most general hypothesis is

$$t(X_1,\ldots,X_n).$$

Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.

 Start with a hypothesis that fits the data and keep making it simpler while still fitting the data.

Single target relation: $A = \{t(X_1, ..., X_n)\}.$ Two main approaches:

 Start with the most general hypothesis and make it more complicated to fit the data. Most general hypothesis is

$$t(X_1,\ldots,X_n).$$

Keep adding conditions, ensuring it always implies the positive examples. At each step, exclude some negative examples.

• Start with a hypothesis that fits the data and keep making it simpler while still fitting the data. Initially the logic program can be E^+ . Operators simplify the program, ensuring it fits the training examples.

Inductive Logic Programming: General to Specific Search

Maintain a logic program G that entails the positive examples. Initially:

$$G = \{t(X_1, \ldots, X_n) \leftarrow\}$$

A specialization operator takes G and returns set S of clauses that specializes G. Thus $G \models S$.

Three primitive specialization operators:

- Split a clause in G on condition c. Clause $a \leftarrow b$ in G is replaced by two clauses: $a \leftarrow b \land c$ and $a \leftarrow b \land \neg c$.
- Split clause $a \leftarrow b$ on variable X, producing:

$$a \leftarrow b \wedge X = t_1$$
.

. . .

$$a \leftarrow b \wedge X = t_k$$
.

where the t_i are terms.

 Remove any clause not necessary to prove the positive examples.

Top-down Inductive Logic Program

```
1: procedure TDInductiveLogicProgram(t, B, E^+, E^-, R)
            t: an atom whose definition is to be learned
 2:
            B: background knowledge is a logic program
 3:
            E^+: positive examples
 4:
            E^-: negative examples
 5:
            R: set of specialization operators
6:
7:
            Output: logic program that classifies E^+ positively and
    E^- negatively or \perp if no program can be found
                    H \leftarrow \{t(X_1,\ldots,X_n) \leftarrow\}
 8:
            while there is e \in E^- such that B \cup H \models e do
9:
                    if there is r \in R such that B \cup r(H) \models E^+ then
10:
                            Choose r \in R such that B \cup r(H) \models E^+
11:
                            H \leftarrow r(H)
12:
13:
                    else
14:
                            return |
            return H
15:
```