Variables

@ Variables are universally quantified in the scope of a clause.

@ A variable assignment is a function from variables into the
domain.

@ Given an interpretation and a variable assignment,
each term denotes an individual and
each clause is either true or false.

@ A clause containing variables is true in an interpretation if it is
true for all variable assignments.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 1

Queries and Answers

A query is a way to ask if a body is a logical consequence of the
knowledge base:

by A\ - A bp.

An answer is either

@ an instance of the query that is a logical consequence of the
knowledge base KB, or

@ no if no instance is a logical consequence of KB.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 2

Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123, B).

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 3

Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building).

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 4

Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer

?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no

?in(kim, r023).

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 5

Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer

?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no

?in(kim, r023). no

?in(kim, B).

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 6

Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no
?in(kim, r023). no
?in(kim, B). in(kim, r123)
in(kim, cs_building)

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 7

Logical Consequence

Atom g is a logical consequence of KB if and only if:
@ gisafactin KB, or

@ there is a rule
g b1 A .. N Dby

in KB such that each b; is a logical consequence of KB.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 8

Debugging false conclusions

To debug answer g that is false in the intended interpretation:
o If g is a fact in KB, this fact is wrong.

@ Otherwise, suppose g was proved using the rule:

g+ by A ...Abg

where each b; is a logical consequence of KB.
» If each b; is true in the intended interpretation, this clause is
false in the intended interpretation.
» If some b; is false in the intended interpretation, debug b;.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 9

Electrical Environment

o) outside power
51 w5
Wl —@7 circuit breaker
52 W2 cb2
w3
3 ‘@_017
w0 switch
T~
w6
. wo-way
P2 @ switch
1] —@
Pl @ light
I} —
2 power
() outlet

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 10

Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h). light(h).

% down(S) is true if switch S is down
down(sy). up(s2). up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h). ok(ch1). ok(chy).

Night(h). —

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 11

Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h). light(h).

% down(S) is true if switch S is down
down(sy). up(s2). up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h). ok(ch1). ok(chy).

?light(h). = yes
2ight(ls). —

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 12

Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h). light(h).

% down(S) is true if switch S is down
down(sy). up(s2). up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h). ok(ch1). ok(chy).

?light(h). = yes
?light(ls). = no
up(X). =

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 13

Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h). light(h).

% down(S) is true if switch S is down
down(sy). up(s2). up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h). ok(ch1). ok(chy).

?light(h). = yes
?light(ls). = no
tup(X). = up(s2), up(ss)

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 14

connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, wi) < up(sz
connected _to(wy, wa) < down

)
(
) < up(s1)
) (
)

<+ down(sy)
connected _to(wa, wz) < up(s3).

(.
(52)-
connected _to(wy, w3 .
connected _to(wa, w3 .
(
(

connected _to(p1, w3).

?connected_to(wp, W). —

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 15

connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, wi) < up(sz
connected _to(wy, wa) < down

)
(
) < up(s1)
) (
)

+ down(sy).
connected _to(wa, wz) < up(s3).

52).

(
(
connected _to(wy, w3
connected _to(wa, w3
(
(

connected _to(p1, w3).

?connected_to(wp, W). — W =w
?connected_to(wy, W). =

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 16

connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, wi) < up(sz
connected _to(wy, wa) < down

)
(
) < up(s1)
) (
)

<+ down(sy)
connected _to(wa, wz) < up(s3).

(.
(52)-
connected _to(wy, w3 .
connected _to(wa, w3 .
(
(

connected _to(p1, w3).

?connected_to(wp, W). — W =w
?connected_to(wy, W). = no
?connected_to(Y,w3). —

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 17

connected_to(X, Y) is true if component X is connected to Y

connected_to(wp, wi) < up(sy).
connected_to(wp, wa) <— down(sy).
) < up(s1).
) (

)

(
(
connected _to(wi, w3
connected _to(ws, w3) < down(sy).
connected _to(wa, wz) < up(s3).

(

connected _to(p1, w3).

W:W1
no
Y=w, Y=w Y=p

?connected_to(wy, W).
?connected _to(wy, W).
?connected_to(Y, ws).
?connected_to(X, W).

HH

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 18

connected_to(X, Y) is true if component X is connected to Y

connected_to(wp, wi) < up(sy).
connected_to(wp, wa) <— down(sy).
connected _to(wi, w3) < up(s1).
connected _to(ws, w3) < down(sy).
connected _to(wa, wz) < up(s3).

(

connected _to(p1, w3).

W:W1

no

Y:W2,Y:W4, Y:pl
X:W(),W:WL...

?connected _to(wy, W).
?connected _to(wy, W).
?connected_to(Y, ws).
?connected_to(X, W).

HH

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 19

% lit(L) is true if the light L is lit
lit(L) < light(L) A ok(L) A live(L).
% live(C) is true if there is power coming into C

live(Y) +
connected_to(Y, Z) A
live(Z).

live(outside).

This is a recursive definition of live.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 20

Recursion and Mathematical Induction

above(X,Y) < on(X,Y).
above(X,Y) < on(X,Z) A above(Z,Y).

This can be seen as:

@ Recursive definition of above: prove above in terms of a base
case (on) or a simpler instance of itself; or

@ Way to prove above by mathematical induction: the base case
is when there are no blocks between X and Y, and if you can
prove above when there are n blocks between them, you can
prove it when there are n 4+ 1 blocks.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 21

Suppose you had a database using the relation:
enrolled(S, C)

which is true when student S is enrolled in course C.
You can't define the relation:

empty _course(C)

which is true when course C has no students enrolled in it.

This is because empty_course(C) doesn't logically follow from a
set of enrolled relations. There are always models where someone
is enrolled in a course!

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 12.3, Page 22

