Learning Summary

- Given a task, use
 - data/experience
 - bias/background knowledge
 - measure of improvement or error

to improve performance on the task.

- Representations for:
 - Data (e.g., discrete values, indicator functions)
 - Models (e.g., decision trees, linear functions, linear separators)
- A way to handle overfitting (e.g., trade-off model complexity and fit-to-data, cross validation).
- Search algorithm (usually local, myopic search) to find the best model that fits the data given the bias.

Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning and SARSA
- Explain the explore-exploit dilemma and solutions
- Explain the difference between on-policy and off-policy reinforcement learning

Reinforcement Learning

What should an agent do given:

- Prior knowledge possible states of the world possible actions
- Observations current state of world immediate reward / punishment
- Goal act to maximize accumulated (discounted) reward Like decision-theoretic planning, except model of dynamics and model of reward not given.

Reinforcement Learning Examples

- Game reward winning, punish losing
- Dog reward obedience, punish destructive behavior
- Robot reward task completion, punish dangerous behavior

Experiences

• We assume there is a sequence of experiences:

```
state, action, reward, state, action, reward, ....
```

- At any time it must decide whether to
 - explore to gain more knowledge
 - exploit knowledge it has already discovered

Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
- The long-term effect of an action depend on what the agent will do in the future.
- The explore-exploit dilemma: at each time should the agent be greedy or inquisitive?

Reinforcement learning: main approaches

- search through a space of policies (controllers)
- learn a model consisting of state transition function P(s'|a,s) and reward function R(s,a,s'); solve this an an MDP.
- learn $Q^*(s, a)$, use this to guide action.

Recall: Asynchronous VI for MDPs, storing Q[s, a]

(If we knew the model:)

Initialize Q[S, A] arbitrarily Repeat forever:

- Select state s, action a
- $Q[s, a] \leftarrow \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q[s', a'] \right)$

Reinforcement Learning (Deterministic case)

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Experiential Asynchronous Value Iteration for Deterministic RL

initialize Q[S,A] arbitrarily observe current state s repeat forever:

select and carry out an action a observe reward r and state s'What do we know now?

Experiential Asynchronous Value Iteration for Deterministic RL

initialize Q[S,A] arbitrarily observe current state s repeat forever: select and carry out an action a observe reward r and state s' $Q[s,a] \leftarrow r + \gamma \max_{a'} Q[s',a']$ $s \leftarrow s'$

Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Temporal Differences

• Suppose we have a sequence of values:

$$v_1, v_2, v_3, \dots$$

and want a running estimate of the average of the first k values:

$$A_k = \frac{v_1 + \dots + v_k}{k}$$

Temporal Differences (cont)

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \dots + v_{k-1} + v_k}{k}$$

Temporal Differences (cont)

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \dots + v_{k-1} + v_k}{k}$$

$$= \frac{k-1}{k} A_{k-1} + \frac{1}{k} v_k$$
Let $\alpha_k = \frac{1}{k}$, then
$$A_k =$$

Temporal Differences (cont)

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \dots + v_{k-1} + v_k}{k}$$

$$= \frac{k-1}{k} A_{k-1} + \frac{1}{k} v_k$$
Let $\alpha_k = \frac{1}{k}$, then
$$A_k = (1 - \alpha_k) A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k (v_k - A_{k-1})$$

"TD formula"

- Often we use this update with α fixed.
- We can guarantee convergence to average if

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

- Idea: store Q[State, Action]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

which can be used in the TD formula giving:

- Idea: store Q[State, Action]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

$$r + \gamma \max_{\mathbf{a'}} Q[\mathbf{s'}, \mathbf{a'}]$$

which can be used in the TD formula giving:

- Idea: store Q[State, Action]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

$$r + \gamma \max_{a'} Q[s', a']$$

which can be used in the TD formula giving:

$$Q[s, a] \leftarrow Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)$$


```
initialize Q[S,A] arbitrarily observe current state s repeat forever:

select and carry out an action a observe reward r and state s'
Q[s,a] \leftarrow Q[s,a] + \alpha \left(r + \gamma \max_{a'} Q[s',a'] - Q[s,a]\right)
s \leftarrow s'
```

Properties of Q-learning

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.
- But what should the agent do?
 - exploit: when in state s,
 - explore:

Properties of Q-learning

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.
- But what should the agent do?
 - exploit: when in state s, select an action that maximizes Q[s,a]
 - explore: select another action

Exploration Strategies

• The ϵ -greedy strategy: choose a random action with probability ϵ and choose a best action with probability $1-\epsilon$.

Exploration Strategies

- The ϵ -greedy strategy: choose a random action with probability ϵ and choose a best action with probability $1-\epsilon$.
- Softmax action selection: in state s, choose action a with probability

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is the *temperature*.

Good actions are chosen more often than bad actions. au defines how much a difference in Q-values maps to a difference in probability.

Exploration Strategies

- The ϵ -greedy strategy: choose a random action with probability ϵ and choose a best action with probability $1-\epsilon$.
- Softmax action selection: in state s, choose action a with probability

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is the *temperature*.

Good actions are chosen more often than bad actions. au defines how much a difference in Q-values maps to a difference in probability.

• "optimism in the face of uncertainty": initialize Q to values that encourage exploration.

Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?

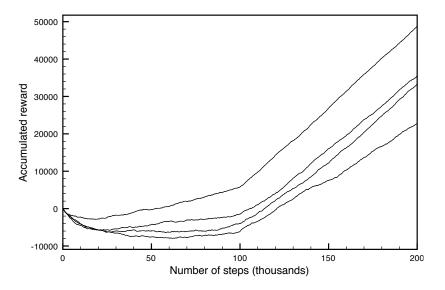
Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
 - ▶ An agent can make better use of the data by

Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
 - An agent can make better use of the data by
 - doing multi-step backups
 - building a model, and using MDP methods to determine optimal policy.
- It learns separately for each state.

Evaluating Reinforcement Learning Algorithms



On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if

On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- On-policy learning learns the value of the policy being followed.
 - e.g., act greedily 80% of the time and act randomly 20% of the time
- Why?

On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- On-policy learning learns the value of the policy being followed.
 - e.g., act greedily 80% of the time and act randomly 20% of the time
- Why? If the agent is actually going to explore, it may be better to optimize the actual policy it is going to do.
- SARSA uses the experience $\langle s, a, r, s', a' \rangle$ to update Q[s, a].

SARSA

```
initialize Q[S,A] arbitrarily observe current state s select action a using a policy based on Q repeat forever:

carry out action a observe reward r and state s' select action a' using a policy based on Q Q[s,a] \leftarrow
```

SARSA

```
initialize Q[S,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:
     carry out action a
     observe reward r and state s'
     select action a' using a policy based on Q
     Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a])
     s \leftarrow s'
     a \leftarrow a'
```


Reinforcement Learning with Features

- Usually we don't want to reason in terms of states, but in terms of features.
- In state-based methods, information about one state cannot be used by similar states.
- If there are too many parameters to learn, it takes too long.
- Idea: Express the value function as a function of the features. Most typical is a linear function of the features.

Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

To find a (local) minimum of a real-valued function f(x):

- ullet assign an arbitrary value to x
- repeat

To find a (local) minimum of a real-valued function f(x):

- assign an arbitrary value to x
- repeat

$$x \leftarrow x - \eta \frac{df}{dx}$$

where η is the step size

To find a (local) minimum of a real-valued function f(x):

- assign an arbitrary value to x
- repeat

$$x \leftarrow x - \eta \frac{df}{dx}$$

where η is the step size

To find a local minimum of real-valued function $f(x_1, \ldots, x_n)$:

- assign arbitrary values to x_1, \ldots, x_n
- repeat: for each x_i

$$x_i \leftarrow$$

To find a (local) minimum of a real-valued function f(x):

- assign an arbitrary value to x
- repeat

$$x \leftarrow x - \eta \frac{df}{dx}$$

where η is the step size

To find a local minimum of real-valued function $f(x_1, \ldots, x_n)$:

- assign arbitrary values to x_1, \ldots, x_n
- repeat:for each x_i

$$x_i \leftarrow x_i - \eta \frac{\partial f}{\partial x_i}$$

Linear Regression

• A linear function of variables x_1, \ldots, x_n is of the form

$$f^{\overline{w}}(x_1,\ldots,x_n)=w_0+w_1x_1+\cdots+w_nx_n$$

$$\overline{w} = \langle w_0, w_1, \dots, w_n \rangle$$
 are weights. (Let $x_0 = 1$).

• Given a set E of examples. Example e has input $x_i = e_i$ for each i and observed value, o_e :

$$Error_{E}(\overline{w}) = \sum_{e \in E} (o_{e} - f^{\overline{w}}(e_{1}, \dots, e_{n}))^{2}$$

 Minimizing the error using gradient descent, each example should update w_i using:

$$w_i \leftarrow$$

Linear Regression

• A linear function of variables x_1, \ldots, x_n is of the form

$$f^{\overline{w}}(x_1,\ldots,x_n)=w_0+w_1x_1+\cdots+w_nx_n$$

$$\overline{w} = \langle w_0, w_1, \dots, w_n \rangle$$
 are weights. (Let $x_0 = 1$).

Given a set E of examples.
 Example e has input x_i = e_i for each i and observed value, o_e:

$$Error_{E}(\overline{w}) = \sum_{e \in E} (o_{e} - f^{\overline{w}}(e_{1}, \dots, e_{n}))^{2}$$

 Minimizing the error using gradient descent, each example should update w_i using:

$$w_i \leftarrow w_i - \eta \frac{\partial Error_E(\overline{w})}{\partial w_i}$$

Gradient Descent for Linear Regression

```
Given E: set of examples over n features each example e has inputs (e_1, \ldots, e_n) and output o_e: Assign weights \overline{w} = \langle w_0, \ldots, w_n \rangle arbitrarily repeat:

For each example e in E:

let \delta = o_e - f^{\overline{w}}(e_1, \ldots, e_n)

For each weight w_i:

w_i \leftarrow w_i + \eta \delta e_i
```

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_1, \ldots, F_n are the features of the state and the action.
- So $Q_{\overline{w}}(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a)$
- An experience $\langle s, a, r, s', a' \rangle$ provides the "example":
 - old predicted value:
 - new "observed" value:

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_1, \ldots, F_n are the features of the state and the action.
- So $Q_{\overline{w}}(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a)$
- An experience $\langle s, a, r, s', a' \rangle$ provides the "example":
 - old predicted value: $Q_{\overline{w}}(s, a)$
 - new "observed" value:

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_1, \ldots, F_n are the features of the state and the action.
- So $Q_{\overline{w}}(s, a) = w_0 + w_1 F_1(s, a) + \cdots + w_n F_n(s, a)$
- An experience $\langle s, a, r, s', a' \rangle$ provides the "example":
 - old predicted value: $Q_{\overline{w}}(s, a)$
 - new "observed" value: $r + \gamma Q_{\overline{w}}(s', a')$


```
Given \gamma:discount factor; \eta:step size
Assign weights \overline{w} = \langle w_0, \dots, w_n \rangle arbitrarily
observe current state s
select action a
repeat forever:
      carry out action a
      observe reward r and state s'
      select action a' (using a policy based on Q_{\overline{w}})
      let \delta = r + \gamma Q_{\overline{w}}(s', a') - Q_{\overline{w}}(s, a)
      For i = 0 to n
             w_i \leftarrow w_i + \eta \delta F_i(s, a)
      s \leftarrow s'
      a \leftarrow a'
```

Example Features

- $F_1(s, a) = 1$ if a goes from state s into a monster location and is 0 otherwise.
- $F_2(s, a) = 1$ if a goes into a wall, is 0 otherwise.
- $F_3(s, a) = 1$ if a goes toward a prize.
- $F_4(s, a) = 1$ if the agent is damaged in state s and action a takes it toward the repair station.
- $F_5(s, a) = 1$ if the agent is damaged and action a goes into a monster location.
- $F_6(s, a) = 1$ if the agent is damaged.
- $F_7(s, a) = 1$ if the agent is not damaged.
- $F_8(s, a) = 1$ if the agent is damaged and there is a prize in direction a.
- $F_9(s, a) = 1$ if the agent is not damaged and there is a prize in direction a.

Example Features

- $F_{10}(s, a)$ is the distance from the left wall if there is a prize at location P_0 , and is 0 otherwise.
- $F_{11}(s, a)$ has the value 4 x, where x is the horizontal position of state s if there is a prize at location P_0 ; otherwise is 0.
- $F_{12}(s, a)$ to $F_{29}(s, a)$ are like F_{10} and F_{11} for different combinations of the prize location and the distance from each of the four walls.
 - For the case where the prize is at location P_0 , the y-distance could take into account the wall.

Model-based Reinforcement Learning

- Model-based reinforcement learning uses the experiences in a more effective manner.
- It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.
- Idea: learn the MDP and interleave acting and planning.
- After each experience, update probabilities and the reward, then do some steps of asynchronous value iteration.

Model-based learner

Data Structures: Q[S,A], T[S,A,S], C[S,A], R[S,A] Assign Q, R arbitrarily, C=0, T=0 observe current state s

repeat forever:

select and carry out action a observe reward r and state s' $T[s, a, s'] \leftarrow T[s, a, s'] + 1$ $C[s, a] \leftarrow C[s, a] + 1$ $R[s, a] \leftarrow R[s, a] + (r - R[s, a])/C[s, a]$

repeat for a while:

select state s_1 , action a_1

$$Q[s_1, a_1] \leftarrow R[s_1, a_1] + \sum_{s_2} \frac{T[s_1, a_1, s_2]}{C[s_1, a_1]} \left(\gamma \max_{a_2} Q[s_2, a_2] \right)$$

Model-based learner

Data Structures: Q[S,A], T[S,A,S], C[S,A], R[S,A] Assign Q, R arbitrarily, C=0, T=0 observe current state s

repeat forever:

select and carry out action a observe reward r and state s' $T[s, a, s'] \leftarrow T[s, a, s'] + 1$ $C[s, a] \leftarrow C[s, a] + 1$ $R[s, a] \leftarrow R[s, a] + (r - R[s, a])/C[s, a]$

repeat for a while:

select state s_1 , action a_1

$$Q[s_1, a_1] \leftarrow R[s_1, a_1] + \sum_{s_2} \frac{T[s_1, a_1, s_2]}{C[s_1, a_1]} \left(\gamma \max_{a_2} Q[s_2, a_2] \right)$$

 $s \leftarrow s'$

What goes wrong with this?

Evolutionary Algorithms

Idea:

- maintain a population of controllers
- evaluate each controller by running it in the environment
- at each generation, the best controllers are combined to form a new population of controllers

Evolutionary Algorithms

- Idea:
 - maintain a population of controllers
 - evaluate each controller by running it in the environment
 - ▶ at each generation, the best controllers are combined to form a new population of controllers
- If there are *n* states and *m* actions, there are policies.

Evolutionary Algorithms

- Idea:
 - maintain a population of controllers
 - evaluate each controller by running it in the environment
 - at each generation, the best controllers are combined to form a new population of controllers
- If there are n states and m actions, there are m^n policies.
- Experiences are used wastefully: only used to judge the whole controller. They don't learn after every step.
- Performance is very sensitive to representation of controller.

