Clustering / Unsupervised Learning

- The target features are not given in the training examples
- The aim is to construct a natural classification that can be used to predict features of the data.

Clustering / Unsupervised Learning

- The target features are not given in the training examples
- The aim is to construct a natural classification that can be used to predict features of the data.
- The examples are partitioned in into clusters or classes. Each class predicts feature values for the examples in the class.
 - In hard clustering each example is placed definitively in a class.
 - In soft clustering each example has a probability distribution over its class.
- Each clustering has a prediction error on the examples. The best clustering is the one that minimizes the error.

The *k*-means algorithm is used for hard clustering. Inputs:

- training examples
- the number of classes, k

Outputs:

- a prediction of a value for each feature for each class
- an assignment of examples to classes

k-means algorithm formalized

- E is the set of all examples
- the input features are X_1, \ldots, X_n
- val(e, X_j) is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \ldots, k\}$.

The k-means algorithm outputs

- a function $class : E \to \{1, \dots, k\}$. class(e) = i means e is in class i.
- a *pval* function where *pval*(*i*, *X_j*) is the prediction for each example in class *i* for feature *X_j*.

The sum-of-squares error for *class* and *pval* is

$$\sum_{e \in E} \sum_{j=1}^{n} (pval(class(e), X_j) - val(e, X_j))^2$$

Aim: find *class* and *pval* that minimize sum-of-squares error.

The sum-of-squares error for *class* and *pval* is

$$\sum_{e \in E} \sum_{j=1}^{n} \left(pval(class(e), X_j) - val(e, X_j) \right)^2.$$

• Given *class*, the *pval* that minimizes the sum-of-squares error is

The sum-of-squares error for *class* and *pval* is

$$\sum_{e \in E} \sum_{j=1}^{n} \left(pval(class(e), X_j) - val(e, X_j) \right)^2.$$

- Given *class*, the *pval* that minimizes the sum-of-squares error is the mean value for that class.
- Given *pval*, each example can be assigned to the class that

The sum-of-squares error for *class* and *pval* is

$$\sum_{e \in E} \sum_{j=1}^{n} \left(pval(class(e), X_j) - val(e, X_j) \right)^2.$$

- Given *class*, the *pval* that minimizes the sum-of-squares error is the mean value for that class.
- Given *pval*, each example can be assigned to the class that minimizes the error for that example.

k-means algorithm

Initially, randomly assign the examples to the classes. Repeat the following two steps:

• For each class i and feature X_i ,

$$pval(i, X_j) \leftarrow \frac{\sum_{e:class(e)=i} val(e, X_j)}{|\{e: class(e) = i\}|},$$

• For each example e, assign e to the class i that minimizes

$$\sum_{j=1}^n \left(pval(i, X_j) - val(e, X_j) \right)^2.$$

until the second step does not change the assignment of any example.

Random Assignment to Classes

< □ →

Assign Each Example to Closest Mean

Ressign Each Example to Closest Mean

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.
- It is not guaranteed to converge to a global minimum.
- It is sensitive to the relative scale of the dimensions.
- Increasing k can always decrease error until k is the number of different examples.

- Used for soft clustering examples are probabilistically in classes.
- k-valued random variable C

• Repeat the following two steps:

- E-step give the expected number of data points for the unobserved variables based on the given probability distribution.
- M-step infer the (maximum likelihood or maximum aposteriori probability) probabilities from the data.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

Augmented Data — E step

 $X_1 \quad X_2 \quad \overline{X_3}$

 $\begin{array}{cccc} \vdots & \vdots \\ t & f & t \end{array}$

: :

÷

Suppose
$$k = 3$$
, and $dom(C) = \{1, 2, 3\}$.
 $P(C = 1 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.407$
 $P(C = 2 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.121$
 $P(C = 3 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.472$:

		ĺ	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	С	Count
<i>X</i> ₄	Count		:	÷	÷	÷	÷	:
÷	÷		t	f	t	t	1	40.7
t	100	\rightarrow	t	f	t	t	2	12.1
÷	:		t	f	t	t	3	47.2
		ļ	÷	:	÷	÷	÷	÷

$$A[X_1,\ldots,X_4,C]$$

M step

M step

...perhaps including pseudo-counts