
Clustering / Unsupervised Learning

The target features are not given in the training examples

The aim is to construct a natural classification that can
be used to predict features of the data.

The examples are partitioned in into clusters or classes.
Each class predicts feature values for the examples in the
class.

I In hard clustering each example is placed definitively in
a class.

I In soft clustering each example has a probability
distribution over its class.

Each clustering has a prediction error on the examples.
The best clustering is the one that minimizes the error.
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k-means algorithm

The k-means algorithm is used for hard clustering.
Inputs:

training examples

the number of classes, k

Outputs:

a prediction of a value for each feature for each class

an assignment of examples to classes
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k-means algorithm formalized

E is the set of all examples

the input features are X1, . . . ,Xn

val(e,Xj) is the value of feature Xj for example e.

there is a class for each integer i ∈ {1, . . . , k}.
The k-means algorithm outputs

a function class : E → {1, . . . , k}.
class(e) = i means e is in class i .

a pval function where pval(i ,Xj) is the prediction for
each example in class i for feature Xj .

The sum-of-squares error for class and pval is∑
e∈E

n∑
j=1

(pval(class(e),Xj)− val(e,Xj))2 .

Aim: find class and pval that minimize sum-of-squares error.
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Minimizing the error

The sum-of-squares error for class and pval is

∑
e∈E

n∑
j=1

(pval(class(e),Xj)− val(e,Xj))2 .

Given class, the pval that minimizes the sum-of-squares
error is

the mean value for that class.

Given pval , each example can be assigned to the class
that minimizes the error for that example.
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k-means algorithm

Initially, randomly assign the examples to the classes.
Repeat the following two steps:

For each class i and feature Xj ,

pval(i ,Xj)←
∑

e:class(e)=i val(e,Xj)

|{e : class(e) = i}|
,

For each example e, assign e to the class i that minimizes

n∑
j=1

(pval(i ,Xj)− val(e,Xj))2 .

until the second step does not change the assignment of any
example.
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Example Data
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Random Assignment to Classes
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Assign Each Example to Closest Mean

0 2 4 6 8 10
0

2

4

6

8

10

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 11.1, Page 11



Ressign Each Example to Closest Mean
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Properties of k-means

An assignment of examples to classes is stable if running
both the M step and the E step does not change the
assignment.

This algorithm will eventually converge to a stable local
minimum.

Any permutation of the labels of a stable assignment is
also a stable assignment.

It is not guaranteed to converge to a global minimum.

It is sensitive to the relative scale of the dimensions.

Increasing k can always decrease error until k is the
number of different examples.
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EM Algorithm

Used for soft clustering — examples are probabilistically
in classes.

k-valued random variable C

Model Data ê Probabilities

C

X1 X2 X3 X4

X1 X2 X3 X4

t f t t
f t t f
f f t t

· · ·

P(C )
P(X1|C )
P(X2|C )
P(X3|C )
P(X4|C )
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EM Algorithm

X1 X2 X3 X4 C count
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

P(C)
P(X1|C)
P(X2|C)
P(X3|C)
P(X4|C)

M-step

E-step
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EM Algorithm Overview

Repeat the following two steps:
I E-step give the expected number of data points for the

unobserved variables based on the given probability
distribution.

I M-step infer the (maximum likelihood or maximum
aposteriori probability) probabilities from the data.

Start either with made-up data or made-up probabilities.

EM will converge to a local maxima.
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Augmented Data — E step

Suppose k = 3, and dom(C ) = {1, 2, 3}.
P(C = 1|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.407
P(C = 2|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.121
P(C = 3|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.472:

X1 X2 X3 X4 Count
...

...
...

...
...

t f t t 100
...

...
...

...
...

−→

A[X1, . . . ,X4,C ]︷ ︸︸ ︷
X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40.7
t f t t 2 12.1
t f t t 3 47.2
...

...
...

...
...

...
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M step

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40.7
t f t t 2 12.1
t f t t 3 47.2
...

...
...

...
...

...

−→

C

X1 X2 X3 X4

P(C=vi) =

∑
t|=C=vi

Count(t)∑
t Count(t)

P(Xk = vj |C=vi) =

∑
t|=C=vi∧Xk=vj

Count(t)∑
t|=C=vi

Count(t)

...perhaps including pseudo-counts
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