- Many domains are characterized by multiple agents rather than a single agent.
- Game theory studies what agents should do in a multi-agent setting.
- Agents can be cooperative, competitive or somewhere in between.
- Agents that are strategic can't be modeled as nature.

- Each agent can have its own values.
- Agents select actions autonomously.
- Agents can have different information.
- The outcome can depend on the actions of all of the agents.
- Each agent's value depends on the outcome.

# Fully Observable + Multiple Agents

- If agents act sequentially and can observe the state before acting: Perfect Information Games.
- Can do dynamic programming or search: Each agent maximizes for itself.
- Multi-agent MDPs: value function for each agent. each agent maximizes its own value function.
- Multi-agent reinforcement learning: each agent has its own *Q* function.
- Two person, competitive (zero sum)  $\implies$  minimax.

The strategic form of a game or normal-form game:

- a finite set I of agents,  $\{1, \ldots, n\}$ .
- a set of actions A<sub>i</sub> for each agent i ∈ I.
  An action profile σ is a tuple (a<sub>1</sub>,..., a<sub>n</sub>), means agent i carries out a<sub>i</sub>.
- a utility function utility(σ, i) for action profile σ and agent i ∈ I, gives the expected utility for agent i when all agents follow action profile σ.

|       |          | Bob   |       |          |
|-------|----------|-------|-------|----------|
|       |          | rock  | paper | scissors |
| Alice | rock     | 0,0   | -1, 1 | 1,-1     |
|       | paper    | 1, -1 | 0,0   | -1, 1    |
|       | scissors | -1, 1 | 1, -1 | 0,0      |

#### Extensive Form of a Game



## Extensive Form of an imperfect-information Game



Bob cannot distinguish the nodes in an information set.

< 🗆 🕨

### Multiagent Decision Networks



Value node for each agent. Each decision node is owned by an agent. Utility for each agent.

## Multiple Agents, shared value



< □ →

# Complexity of Multi-agent decision theory

- It can be exponentially harder to find optimal multi-agent policy even with a shared values.
- Why? Because dynamic programming doesn't work:
  - If a decision node has n binary parents, dynamic programming lets us solve 2<sup>n</sup> decision problems.
  - ► This is much better than d<sup>2<sup>n</sup></sup> policies (where d is the number of decision alternatives).
- Multiple agents with shared values is equivalent to having a single forgetful agent.

## Partial Observability and Competition



(□)

#### **Stochastic Policies**



- Assume a general *n*-player game,
- A strategy for an agent is a probability distribution over the actions for this agent.
- A strategy profile is an assignment of a strategy to each agent.
- A strategy profile σ has a utility for each agent. Let *utility*(σ, i) be the utility of strategy profile σ for agent i.
- If σ is a strategy profile:
  σ<sub>i</sub> is the strategy of agent i in σ,
  σ<sub>-i</sub> is the set of strategies of the other agents.
  Thus σ is σ<sub>i</sub>σ<sub>-i</sub>

σ<sub>i</sub> is a best response to σ<sub>-i</sub> if for all other strategies σ'<sub>i</sub> for agent i,

 $utility(\sigma_i \sigma_{-i}, i) \geq utility(\sigma'_i \sigma_{-i}, i).$ 

- A strategy profile σ is a Nash equilibrium if for each agent i, strategy σ<sub>i</sub> is a best response to σ<sub>-i</sub>. That is, a Nash equilibrium is a strategy profile such that no agent can be better by unilaterally deviating from that profile.
- Theorem [Nash, 1950] Every finite game has at least one Nash equilibrium.



D and R are both positive with D >> R.

Just because you know the Nash equilibria doesn't mean you know what to do:

|         |          | Agent 2  |          |
|---------|----------|----------|----------|
|         |          | shopping | football |
| Agent 1 | shopping | 2,1      | 0,0      |
|         | football | 0,0      | 1,2      |

Two strangers are in a game show. They each have the choice:

- Take \$100 for yourself
- Give \$1000 to the other player

This can be depicted as the playoff matrix:

|          |      | Player 2 |           |  |
|----------|------|----------|-----------|--|
|          |      | take     | give      |  |
| Player 1 | take | 100,100  | 1100,0    |  |
|          | give | 0,1100   | 1000,1000 |  |

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of 10 100/100 = 9
- If every agent does the action the total payoff is

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of 10 100/100 = 9
- If every agent does the action the total payoff is 1000 10000 = -9000

To compute a Nash equilibria for a game in strategic form:

- Eliminate dominated strategies
- Determine which actions will have non-zero probabilities. This is the support set.
- Determine the probability for the actions in the support set

#### **Eliminating Dominated Strategies**



Given a support set:

 Why would an agent will randomize between actions a<sub>1</sub>...a<sub>k</sub>? Given a support set:

- Why would an agent will randomize between actions  $a_1 \dots a_k$ ? Actions  $a_1 \dots a_k$  have the same value for that agent given the strategies for the other agents.
- This forms a set of simultaneous equations where variables are probabilities of the actions
- If there is a solution with all the probabilities in range (0,1) this is a Nash equilibrium.

Search over support sets to find a Nash equilibrium

- Each agent maintains *P*[*A*] a probability distribution over actions.
- Each agent maintains Q[A] an estimate of value of doing A given policy of other agents.
- Repeat:
  - select action a using distribution P,
  - do a and observe payoff
  - update Q:

- Each agent maintains *P*[*A*] a probability distribution over actions.
- Each agent maintains Q[A] an estimate of value of doing A given policy of other agents.
- Repeat:
  - select action a using distribution P,
  - do a and observe payoff
  - update  $Q: Q[a] \leftarrow Q[a] + \alpha(payoff Q[a])$
  - incremented probability of best action by  $\delta$ .
  - decremented probability of other actions