
Single agent or multiple agents

Many domains are characterized by multiple agents rather
than a single agent.

Game theory studies what agents should do in a
multi-agent setting.

Agents can be cooperative, competitive or somewhere in
between.

Agents that are strategic can’t be modeled as nature.
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Multi-agent framework

Each agent can have its own values.

Agents select actions autonomously.

Agents can have different information.

The outcome can depend on the actions of all of the
agents.

Each agent’s value depends on the outcome.
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Fully Observable + Multiple Agents

If agents act sequentially and can observe the state before
acting: Perfect Information Games.

Can do dynamic programming or search:
Each agent maximizes for itself.

Multi-agent MDPs: value function for each agent.
each agent maximizes its own value function.

Multi-agent reinforcement learning: each agent has its
own Q function.

Two person, competitive (zero sum) =⇒ minimax.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 10.1, Page 3



Normal Form of a Game

The strategic form of a game or normal-form game:

a finite set I of agents, {1, . . . , n}.
a set of actions Ai for each agent i ∈ I .
An action profile σ is a tuple 〈a1, . . . , an〉, means agent i
carries out ai .

a utility function utility(σ, i) for action profile σ and
agent i ∈ I , gives the expected utility for agent i when all
agents follow action profile σ.
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Rock-Paper-Scissors

Bob
rock paper scissors

rock 0, 0 −1, 1 1,−1
Alice paper 1,−1 0, 0 −1, 1

scissors −1, 1 1,−1 0,0
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Extensive Form of a Game

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0
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Extensive Form of an imperfect-information Game

r p s

rock

Alice

Bob Bob Bob

paper scissors

0,0 1,-1-1,1

r p s

1,-1 -1,10,0

r p s

-1,1 0,01,-1

Bob cannot distinguish the nodes in an information set.
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Multiagent Decision Networks

Fire
Alarm1

Alarm2

Call1

Call2

Call 
Works

Fire Dept 
Comes

U1

U2

Value node for each agent.
Each decision node is owned by an agent.
Utility for each agent.
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Multiple Agents, shared value

...

...

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 10.1, Page 9



Complexity of Multi-agent decision theory

It can be exponentially harder to find optimal multi-agent
policy even with a shared values.

Why? Because dynamic programming doesn’t work:
I If a decision node has n binary parents, dynamic

programming lets us solve 2n decision problems.
I This is much better than d2n policies (where d is the

number of decision alternatives).

Multiple agents with shared values is equivalent to having
a single forgetful agent.
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Partial Observability and Competition

goalie
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.
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Stochastic Policies

0 0.2 0.4 0.6 0.8 1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

pk

P(goal)

pj=1

pj= 0
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Strategy Profiles

Assume a general n-player game,

A strategy for an agent is a probability distribution over
the actions for this agent.

A strategy profile is an assignment of a strategy to each
agent.

A strategy profile σ has a utility for each agent. Let
utility(σ, i) be the utility of strategy profile σ for agent i .

If σ is a strategy profile:
σi is the strategy of agent i in σ,
σ−i is the set of strategies of the other agents.
Thus σ is σiσ−i
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Nash Equilibria

σi is a best response to σ−i if for all other strategies σ′i
for agent i ,

utility(σiσ−i , i) ≥ utility(σ′iσ−i , i).

A strategy profile σ is a Nash equilibrium if for each agent
i , strategy σi is a best response to σ−i . That is, a Nash
equilibrium is a strategy profile such that no agent can be
better by unilaterally deviating from that profile.

Theorem [Nash, 1950] Every finite game has at least one
Nash equilibrium.
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Multiple Equilibria

Hawk-Dove Game:
Agent 2

dove hawk
Agent 1 dove R/2,R/2 0,R

hawk R,0 -D,-D

D and R are both positive with D >> R .
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Coordination

Just because you know the Nash equilibria doesn’t mean you
know what to do:

Agent 2
shopping football

Agent 1 shopping 2,1 0,0
football 0,0 1,2

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 10.1, Page 16



Prisoner’s Dilemma

Two strangers are in a game show. They each have the
choice:

Take $100 for yourself

Give $1000 to the other player

This can be depicted as the playoff matrix:

Player 2
take give

Player 1 take 100,100 1100,0
give 0,1100 1000,1000
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Tragedy of the Commons

Example:

There are 100 agents.

There is an common environment that is shared amongst
all agents. Each agent has 1/100 of the shared
environment.

Each agent can choose to do an action that has a payoff
of +10 but has a -100 payoff on the environment
or do nothing with a zero payoff

For each agent, doing the action has a payoff of
10− 100/100 = 9

If every agent does the action the total payoff is
1000− 10000 = −9000
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Computing Nash Equilibria

To compute a Nash equilibria for a game in strategic form:

Eliminate dominated strategies

Determine which actions will have non-zero probabilities.
This is the support set.

Determine the probability for the actions in the support
set
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Eliminating Dominated Strategies

Agent 2
d2 e2 f2

a1 3,5 5,1 1,2
Agent 1 b1 1,1 2,9 6,4

c1 2,6 4,7 0,8
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Computing probabilities in randomizes strategies

Given a support set:

Why would an agent will randomize between actions
a1 . . . ak?

Actions a1 . . . ak have the same value for that
agent given the strategies for the other agents.

This forms a set of simultaneous equations where
variables are probabilities of the actions

If there is a solution with all the probabilities in range
(0,1) this is a Nash equilibrium.

Search over support sets to find a Nash equilibrium
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Learning to Coordinate

Each agent maintains P[A] a probability distribution over
actions.

Each agent maintains Q[A] an estimate of value of doing
A given policy of other agents.

Repeat:
I select action a using distribution P,
I do a and observe payoff
I update Q:

Q[a]← Q[a] + α(payoff − Q[a])
I incremented probability of best action by δ.
I decremented probability of other actions

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 10.1, Page 26



Learning to Coordinate

Each agent maintains P[A] a probability distribution over
actions.

Each agent maintains Q[A] an estimate of value of doing
A given policy of other agents.

Repeat:
I select action a using distribution P,
I do a and observe payoff
I update Q: Q[a]← Q[a] + α(payoff − Q[a])
I incremented probability of best action by δ.
I decremented probability of other actions

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 10.1, Page 27


