At the end of the class you should be able to:

- the model of deterministic planning
- represent a problem using both STRIPs and the feature-based representation of actions.

- Planning is deciding what to do based on an agent's ability, its goals. and the state of the world.
- Planning is finding a sequence of actions to solve a goal.
- Initial assumptions:
 - The world is deterministic.
 - There are no exogenous events outside of the control of the robot that change the state of the world.
 - The agent knows what state it is in.
 - Time progresses discretely from one state to the next.
 - Goals are predicates of states that need to be achieved or maintained.

- A deterministic action is a partial function from states to states.
- The preconditions of an action specify when the action can be carried out.
- The effect of an action specifies the resulting state.

Delivery Robot Example

Features:

RLoc – Rob's location RHC – Rob has coffee SWC – Sam wants coffee MW – Mail is waiting RHM – Rob has mail

Actions:

mc – move clockwise
mcc – move counterclockwise
puc – pickup coffee
dc – deliver coffee
pum – pickup mail
dm – deliver mail

State	Action	Resulting State
$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тс	$\langle mr, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тсс	$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	dm	$\langle off, \overline{rhc}, \overline{swc}, \overline{mw}, \overline{rhm} \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тсс	$\langle cs, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	тс	$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
••••		

For each action:

• precondition is a proposition that specifies when the action can be carried out.

For each feature:

- causal rules that specify when the feature gets a new value and
- frame rules that specify when the feature keeps its value.

Precondition of pick-up coffee (*puc*):

 $RLoc = cs \land \overline{rhc}$

Rules for location is cs:

$$RLoc'=cs \leftarrow RLoc=off \land Act=mcc$$

 $RLoc'=cs \leftarrow RLoc=mr \land Act=mc$
 $RLoc'=cs \leftarrow RLoc=cs \land Act \neq mcc \land Act \neq mc$

Rules for "robot has coffee"

$$\mathit{rhc'} \leftarrow \mathit{rhc} \land \mathit{Act} \neq \mathit{dc}$$

 $\mathit{rhc'} \leftarrow \mathit{Act} = \mathit{puc}$

Divide the features into:

- primitive features
- derived features. There are rules specifying how derived can be derived from primitive features.

For each action:

- precondition that specifies when the action can be carried out.
- effect a set of assignments of values to primitive features that are made true by this action.

STRIPS assumption: every primitive feature not mentioned in the effects is unaffected by the action.

Pick-up coffee (*puc*):

- precondition: [cs, rhc]
- effect: [rhc]

Deliver coffee (dc):

- precondition: [off, rhc]
- effect: [*rhc*, *swc*]