Composite Models

Many methods can be see as:

E.g., neural networks, regression trees, random forest, ... Some combinations don't help.

Handling Overfitting

- Overfitting occurs when the system finds regularities in the training set that are not in the test set.
- Prefer simpler models. How do we trade off simplicity and fit to data?
- Test it on some hold-out data.

Description Length

Bayes Rule:

$$
\begin{aligned}
& P(h \mid d) \propto P(d \mid h) P(h) \\
& \begin{aligned}
\arg \max _{h} P(h \mid d) & =\arg \max _{h} P(d \mid h) P(h) \\
& =\arg \max _{h}(\log P(d \mid h)+\log P(h))
\end{aligned}
\end{aligned}
$$

Description Length

Bayes Rule:

$$
\begin{aligned}
& P(h \mid d) \propto P(d \mid h) P(h) \\
& \begin{aligned}
\arg \max _{h} P(h \mid d) & =\arg \max _{h} P(d \mid h) P(h) \\
& =\arg \max _{h}(\log P(d \mid h)+\log P(h))
\end{aligned}
\end{aligned}
$$

- $\log P(d \mid h)$ measures fit to data
- $\log P(h)$ measures model complexity

Regularization

Logistic regression:

$$
\operatorname{minimize} \operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}
$$

L2 regularization:

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i} w_{i}^{2}
$$

L1 regularization:

$$
\operatorname{minimize} \sum_{e \in E}\left(Y(e)-f\left(\sum_{i} w_{i} X_{i}(e)\right)\right)^{2}+\lambda \sum_{i}\left|w_{i}\right|
$$

λ is a parameter to be learned.

Cross Validation

Idea: split the training set into:

- new training set
- validation set

Use the new training set to train on. Use the model that works best on the validation set.

- To evaluate your algorithm, the test should must not be used for training or validation.
- Many variants: k-fold cross validation, leave-one-out cross validation,...

