Learning Objectives

At the end of the class you should be able to:

- identify a supervised learning problem
- characterize how the prediction is a function of the error measure
- avoid mixing the training and test sets

Supervised Learning

Given:

- a set of inputs features X_{1}, \ldots, X_{n}
- a set of target features Y_{1}, \ldots, Y_{k}
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given
predict the values for the target features for the new example.

Supervised Learning

Given:

- a set of inputs features X_{1}, \ldots, X_{n}
- a set of target features Y_{1}, \ldots, Y_{k}
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given
predict the values for the target features for the new example.
- classification when the Y_{i} are discrete
- regression when the Y_{i} are continuous

Example Data Representations

A travel agent wants to predict the preferred length of a trip, which can be from 1 to 6 days. (No input features).
Two representations of the same data:
$-Y$ is the length of trip chosen.

- Each Y_{i} is an indicator variable that has value 1 if the chosen length is i, and is 0 otherwise.

Example	Y							
	e_{1}	1		Example	Y_{1}	Y_{2}	Y_{3}	Y_{4}
e_{2}	6		Y_{5}	Y_{6}				
e_{3}	6		e_{2}	0	0	0	0	0
e_{4}	2		e_{3}	0	0	0	0	0
e_{5}	1	e_{4}	0	1	0	0	0	1
		e_{5}	1	0	0	0	0	0

What is a prediction?

Evaluating Predictions

Suppose we want to make a prediction of a value for a target feature on example e :

- o_{e} is the observed value of target feature on example e.
- p_{e} is the predicted value of target feature on example e.
- The error of the prediction is a measure of how close p_{e} is to o_{e}.
- There are many possible errors that could be measured. Sometimes p_{e} can be a real number even though o_{e} can only have a few values.

Measures of error

E is the set of examples, with single target feature. For $e \in E$, o_{e} is observed value and p_{e} is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$

Measures of error

E is the set of examples, with single target feature. For $e \in E$, o_{e} is observed value and p_{e} is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$
- sum of squares error $L_{2}^{2}(E)=\sum_{e \in E}\left(o_{e}-p_{e}\right)^{2}$

Measures of error

E is the set of examples, with single target feature. For $e \in E$, o_{e} is observed value and p_{e} is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$
- sum of squares error $L_{2}^{2}(E)=\sum_{e \in E}\left(o_{e}-p_{e}\right)^{2}$
- worst-case error: $L_{\infty}(E)=\max _{e \in E}\left|o_{e}-p_{e}\right|$

Measures of error

E is the set of examples, with single target feature. For $e \in E$, o_{e} is observed value and p_{e} is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$
- sum of squares error $L_{2}^{2}(E)=\sum_{e \in E}\left(o_{e}-p_{e}\right)^{2}$
- worst-case error: $L_{\infty}(E)=\max _{e \in E}\left|o_{e}-p_{e}\right|$
- number wrong: $L_{0}(E)=\#\left\{e: o_{e} \neq p_{e}\right\}$

Measures of error

E is the set of examples, with single target feature. For $e \in E$, o_{e} is observed value and p_{e} is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$
- sum of squares error $L_{2}^{2}(E)=\sum_{e \in E}\left(o_{e}-p_{e}\right)^{2}$
- worst-case error: $L_{\infty}(E)=\max _{e \in E}\left|o_{e}-p_{e}\right|$
- number wrong: $L_{0}(E)=\#\left\{e: o_{e} \neq p_{e}\right\}$
- A cost-based error takes into account costs of errors.

Measures of error (cont.)

With binary feature: $o_{e} \in\{0,1\}$:

- likelihood of the data

$$
\prod_{e \in E} p_{e}^{o_{e}}\left(1-p_{e}\right)^{\left(1-o_{e}\right)}
$$

Measures of error (cont.)

With binary feature: $o_{e} \in\{0,1\}$:

- likelihood of the data

$$
\prod_{e \in E} p_{e}^{o_{e}}\left(1-p_{e}\right)^{\left(1-o_{e}\right)}
$$

- log likelihood

$$
\sum_{e \in E}\left(o_{e} \log p_{e}+\left(1-o_{e}\right) \log \left(1-p_{e}\right)\right)
$$

is negative of number of bits to encode the data given a code based on p_{e}.

Information theory overview

- A bit is a binary digit.
- 1 bit can distinguish 2 items
- k bits can distinguish 2^{k} items
- n items can be distinguished using $\log _{2} n$ bits
- Can we do better?

Information and Probability

Consider a code to distinguish elements of $\{a, b, c, d\}$ with

$$
P(a)=\frac{1}{2}, P(b)=\frac{1}{4}, P(c)=\frac{1}{8}, P(d)=\frac{1}{8}
$$

Consider the code:

$$
\begin{array}{llllllll}
a & 0 & b & 10 & c & 110 & d & 111
\end{array}
$$

This code uses 1 to 3 bits. On average, it uses

$$
\begin{aligned}
& P(a) \times 1+P(b) \times 2+P(c) \times 3+P(d) \times 3 \\
& \quad=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{3}{8}=1 \frac{3}{4} \text { bits. }
\end{aligned}
$$

The string aacabbda has code

Information and Probability

Consider a code to distinguish elements of $\{a, b, c, d\}$ with

$$
P(a)=\frac{1}{2}, P(b)=\frac{1}{4}, P(c)=\frac{1}{8}, P(d)=\frac{1}{8}
$$

Consider the code:

$$
\begin{array}{llllllll}
a & 0 & b & 10 & c & 110 & d & 111
\end{array}
$$

This code uses 1 to 3 bits. On average, it uses

$$
\begin{aligned}
& P(a) \times 1+P(b) \times 2+P(c) \times 3+P(d) \times 3 \\
& \quad=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{3}{8}=1 \frac{3}{4} \text { bits. }
\end{aligned}
$$

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string

Information and Probability

Consider a code to distinguish elements of $\{a, b, c, d\}$ with

$$
P(a)=\frac{1}{2}, P(b)=\frac{1}{4}, P(c)=\frac{1}{8}, P(d)=\frac{1}{8}
$$

Consider the code:

$$
\begin{array}{llllllll}
a & 0 & b & 10 & c & 110 & d & 111
\end{array}
$$

This code uses 1 to 3 bits. On average, it uses

$$
\begin{aligned}
& P(a) \times 1+P(b) \times 2+P(c) \times 3+P(d) \times 3 \\
& \quad=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{3}{8}=1 \frac{3}{4} \text { bits. }
\end{aligned}
$$

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string adcabba

Information Content

- To identify x, we need $-\log _{2} P(x)$ bits.
- Give a distribution over a set, to a identify a member, the expected number of bits

$$
\sum_{x}-P(x) \times \log _{2} P(x)
$$

is the information content or entropy of the distribution.

- The expected number of bits it takes to describe a distribution given evidence e :

$$
I(e)=\sum_{x}-P(x \mid e) \times \log _{2} P(x \mid e)
$$

Information Gain

Given a test that can distinguish the cases where α is true from the cases where α is false, the information gain from this test is:

$$
I(\text { true })-(P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha))
$$

- I(true) is the expected number of bits needed before the test
- $P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha)$ is the expected number of bits after the test.

Linear Predictions

Linear Predictions

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is $($ maximum + minimum $) / 2$

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is $($ maximum + minimum $) / 2$
- When Y has values $\{0,1\}$, the prediction that maximizes the likelihood on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is $($ maximum + minimum $) / 2$
- When Y has values $\{0,1\}$, the prediction that maximizes the likelihood on E is the empirical probability.

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is $($ maximum + minimum $) / 2$
- When Y has values $\{0,1\}$, the prediction that maximizes the likelihood on E is the empirical probability.
- When Y has values $\{0,1\}$, the prediction that minimizes the entropy on E is

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is (maximum + minimum $) / 2$
- When Y has values $\{0,1\}$, the prediction that maximizes the likelihood on E is the empirical probability.
- When Y has values $\{0,1\}$, the prediction that minimizes the entropy on E is the empirical probability.

Point Estimates

To make a single prediction for feature Y, with examples E.

- The prediction that minimizes the sum of squares error on E is the mean (average) value of Y.
- The prediction that minimizes the absolute error on E is the median value of Y.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is (maximum + minimum $) / 2$
- When Y has values $\{0,1\}$, the prediction that maximizes the likelihood on E is the empirical probability.
- When Y has values $\{0,1\}$, the prediction that minimizes the entropy on E is the empirical probability.
But that doesn't mean that these predictions minimize the error for future predictions....

Training and Test Sets

To evaluate how well a learner will work on future predictions, we divide the examples into:

- training examples that are used to train the learner
- test examples that are used to evaluate the learner ...these must be kept separate.

Learning Probabilities

- Empirical probabilities do not make good predictors of test set when evaluated by likelihood or entropy.
- Why?

Learning Probabilities

- Empirical probabilities do not make good predictors of test set when evaluated by likelihood or entropy.
- Why? A probability of zero means "impossible" and has infinite cost if there is one true case in test set.

Learning Probabilities

- Empirical probabilities do not make good predictors of test set when evaluated by likelihood or entropy.
- Why? A probability of zero means "impossible" and has infinite cost if there is one true case in test set.
- Solution: (Laplace smoothing) add (non-negative) pseudo-counts to the data.
Suppose n_{i} is the number of examples with $X=v_{i}$, and c_{i} is the pseudo-count:

$$
P\left(X=v_{i}\right)=\frac{c_{i}+n_{i}}{\sum_{i^{\prime}} c_{i^{\prime}}+n_{i^{\prime}}}
$$

- Pseudo-counts convey prior knowledge. Consider: "how much more would I believe v_{i} if I had seen one example with v_{i} true than if I has seen no examples with v_{i} true?"

