
Learning Objectives

At the end of the class you should be able to:

identify a supervised learning problem

characterize how the prediction is a function of the error
measure

avoid mixing the training and test sets
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Supervised Learning

Given:

a set of inputs features X1, . . . ,Xn

a set of target features Y1, . . . ,Yk

a set of training examples where the values for the input
features and the target features are given for each
example

a new example, where only the values for the input
features are given

predict the values for the target features for the new example.

classification when the Yi are discrete

regression when the Yi are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).
Two representations of the same data:
— Y is the length of trip chosen.
— Each Yi is an indicator variable that has value 1 if the
chosen length is i , and is 0 otherwise.

Example Y
e1 1
e2 6
e3 6
e4 2
e5 1

Example Y1 Y2 Y3 Y4 Y5 Y6

e1 1 0 0 0 0 0
e2 0 0 0 0 0 1
e3 0 0 0 0 0 1
e4 0 1 0 0 0 0
e5 1 0 0 0 0 0

What is a prediction?
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

oe is the observed value of target feature on example e.

pe is the predicted value of target feature on example e.

The error of the prediction is a measure of how close pe
is to oe .

There are many possible errors that could be measured.

Sometimes pe can be a real number even though oe can only
have a few values.
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Measures of error

E is the set of examples, with single target feature. For e ∈ E ,
oe is observed value and pe is predicted value:

absolute error L1(E ) =
∑
e∈E

|oe − pe |

sum of squares error L22(E ) =
∑
e∈E

(oe − pe)2

worst-case error : L∞(E ) = max
e∈E
|oe − pe |

number wrong : L0(E ) = #{e : oe 6= pe}

A cost-based error takes into account costs of errors.
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Measures of error (cont.)

With binary feature: oe ∈ {0, 1}:
likelihood of the data∏

e∈E

poee (1− pe)(1−oe)

log likelihood∑
e∈E

(oe log pe + (1− oe) log(1− pe))

is negative of number of bits to encode the data given a
code based on pe .
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Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can we do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, c , d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code

00110010101110.
The code 0111110010100 represents string adcabba

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 14



Information and Probability

Consider a code to distinguish elements of {a, b, c , d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string

adcabba

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 15



Information and Probability

Consider a code to distinguish elements of {a, b, c , d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string adcabba

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 16



Information Content

To identify x , we need − log2 P(x) bits.

Give a distribution over a set, to a identify a member, the
expected number of bits∑

x

−P(x)× log2 P(x).

is the information content or entropy of the
distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑
x

−P(x |e)× log2 P(x |e).
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Information Gain

Given a test that can distinguish the cases where α is true
from the cases where α is false, the information gain from
this test is:

I (true)− (P(α)× I (α) + P(¬α)× I (¬α)).

I (true) is the expected number of bits needed before the
test

P(α)× I (α) + P(¬α)× I (¬α) is the expected number of
bits after the test.
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Linear Predictions

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

L∞
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Point Estimates

To make a single prediction for feature Y , with examples E .

The prediction that minimizes the sum of squares error on
E is

the mean (average) value of Y .

The prediction that minimizes the absolute error on E is
the median value of Y .

The prediction that minimizes the number wrong on E is
the mode of Y .

The prediction that minimizes the worst-case error on E
is (maximum + minimum)/2

When Y has values {0, 1}, the prediction that maximizes
the likelihood on E is the empirical probability.

When Y has values {0, 1}, the prediction that minimizes
the entropy on E is the empirical probability.

But that doesn’t mean that these predictions minimize the
error for future predictions....
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Training and Test Sets

To evaluate how well a learner will work on future predictions,
we divide the examples into:

training examples that are used to train the learner

test examples that are used to evaluate the learner

...these must be kept separate.
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Learning Probabilities

Empirical probabilities do not make good predictors of
test set when evaluated by likelihood or entropy.

Why?

A probability of zero means “impossible” and has
infinite cost if there is one true case in test set.

Solution: (Laplace smoothing) add (non-negative)
pseudo-counts to the data.
Suppose ni is the number of examples with X = vi , and
ci is the pseudo-count:

P(X = vi) =
ci + ni∑
i ′ ci ′ + ni ′

Pseudo-counts convey prior knowledge. Consider: “how
much more would I believe vi if I had seen one example
with vi true than if I has seen no examples with vi true?”
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