Searching Possible Worlds

@ Can we estimate the probabilities by only enumerating a
few of the possible worlds?

@ How can we enumerate just a few of the most probable
possible worlds?

@ Can we estimate the error in our estimates?

@ Can we exploit the structure that variable elimination
does?

@ Can we exploit more structure?

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 1

The search tree has nodes labeled with variables, and is
defined as follows:

Each non-leaf node is labelled with a variable

The arcs are labelled with values. There is a child for a
node X for every value in the domain of X.

A node cannot be labelled with the same label as an
ancestor node.

A path from the root corresponds to an assignment to a
set of variables.

In a full tree, every path from the root to a leaf contains
all variables. The leaves correspond to possible worlds.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 2

Example search tree

Suppose we have 3 variables, X with domain {a, b}, Y with
domain {t, f}, and Z with domain {a, b, c}:

yoy
OBNO

cliofelole

G2 4% dh oAb db

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 3

Basic Search Algorithm

Q:={0}k
W= {},

While Q # {} do
choose and remove (Yi=vy, -, Yj=v;) from Q;
if j=n
W<+ Wu {<Y1:V17 N YJ:VJ>}
else

Select a variable Y1 ¢ {Y1,..., Y}
QR+ QU {<Y1:V17 T Yj:vjv Yj+1:V> Lve dom(yj—i-l)}

Q is a set of paths from root to a leaf.
W is a set of generated possible worlds.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 4

Properties of the Algorithm

@ Each partial description can only be generated once.
There is no need to check for multiple paths or loops in

the search.
@ The probability of a world W is

H P(Xi|parents(X;))w

@ Once a factor is fully assigned, we can multiply by its
value.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 5

Estimating the Probabilities

Use W, at the start of an iteration of the while loop, as an
approximation to the set of all possible worlds.
Let

PE, = > Pw)

weWAwl=g

Po=1- P,'}’V“e
Then

<P(g) <

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 6

Estimating the Probabilities

Use W, at the start of an iteration of the while loop, as an
approximation to the set of all possible worlds.
Let

PE, = > Pw)

weWAwl=g
Pq=1- Py"

Then

Py < P(g) < Pi + Po

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 7

Posterior Probabilities

Given the definition of conditional probability:

P(g N obs)

Plglobs) = P(obs)

We estimate the probability of a conditional probability:

< P(gl|obs) <

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 8

Posterior Probabilities

Given the definition of conditional probability:

P(g N obs)

Plglobs) = P(obs)

We estimate the probability of a conditional probability:

Pg/\ObS Pg/\obs p
— W < P(g|obs) < VVb—JrQ
Pobs + Pq Pets + Pq

If we choose the midpoint as an estimate:

Error <

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 9

Posterior Probabilities

Given the definition of conditional probability:

P(g N obs)

Plglobs) = P(obs)

We estimate the probability of a conditional probability:
< P(g|obs) <

If we choose the midpoint as an estimate:

Pq

Error _—
2(Py + Po)

As the computation progresses, the probability mass in the
queue Pg approaches zero.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 10

@ We only need to consider the ancestors of the variables we
are interested in. We can prune the rest before the search.

@ When computing P(«), we prune partial descriptions if it
can be determined whether « is true or false in that
partial description.

@ When computing P(e|OBS), we prune partial
descriptions in which OBS is false.
@ We want to generate the most likely possible worlds to

minimize the error. One good search strategy is a
depth-first search, pruning unlikely worlds.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 11

Recursive Conditioning

@ Consider a factor graph where the nodes are factors and
there are arcs between two factors that have a variables in
common.

@ Assigning a value v to a variable X, simplifies all factors
that contain X.
Factor F that contains X becomes factor Fx—_, which
doesn't contain X.

@ If an assignment disconnects the graph, each component
can be evaluated separately.

@ Computed values can be cached. The cache can be
checked before evaluating any query.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 12

Recursive Conditioning

procedure rc(Fs : set of factors):

if Fs ={} return 1

else if 3v such that (Fs,v) € cache
return v

else if 3F € Fs such that vars(F) = {}
return F X rc(Fs\ F)

else if Fs = Fs; W Fs, such that vars(Fs;) N vars(Fsy) = {}
return rc(Fsy) x rc(Fsp)

else select variable X € vars(Fs)
sum <0
for each v € dom(X)

sum < sum + rc({Fx=, : F € Fs})

cache < cache U {(Fs, sum)}
return sum

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 13

Notes on the rc(Fs) algorithm

@ cache is a global variable that contains sets of pairs.
It is initially empty.

@ vars(F) returns the unassigned variables in F

@ Fx—, is F with variable X assigned to value v

@ Fs = Fs; W Fs, is the disjoint union, meaning Fs; # {},
Fs, #{}, FsiNFs, ={}, Fs = Fs; U Fs,
This step recognizes when the graph is disconnected.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 14

Exploiting Structure in Recursive Conditioning

@ How can we exploit determinism (zero probabilities)?

@ How can we exploit context-specific independencies.
Eg,if PX|Y =y, Z=2)=P(X|Y =y, Z=2)fora
particular y and for all values z, z'?

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 15

