
Searching Possible Worlds

Can we estimate the probabilities by only enumerating a
few of the possible worlds?

How can we enumerate just a few of the most probable
possible worlds?

Can we estimate the error in our estimates?

Can we exploit the structure that variable elimination
does?

Can we exploit more structure?
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Search tree

The search tree has nodes labeled with variables, and is
defined as follows:

Each non-leaf node is labelled with a variable

The arcs are labelled with values. There is a child for a
node X for every value in the domain of X .

A node cannot be labelled with the same label as an
ancestor node.

A path from the root corresponds to an assignment to a
set of variables.

In a full tree, every path from the root to a leaf contains
all variables. The leaves correspond to possible worlds.
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Example search tree

Suppose we have 3 variables, X with domain {a, b}, Y with
domain {t, f }, and Z with domain {a, b, c}:
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Basic Search Algorithm

Q := {〈〉};
W := {};
While Q 6= {} do

choose and remove 〈Y1=v1, · · · ,Yj=vj〉 from Q;
if j = n

W ← W ∪ {〈Y1=v1, · · · ,Yj=vj〉}
else

Select a variable Yj+1 /∈ {Y1, . . . ,Yn}
Q ← Q ∪ {〈Y1=v1, · · · ,Yj=vj ,Yj+1=v〉 : v ∈ dom(Yj+1)}

Q is a set of paths from root to a leaf.
W is a set of generated possible worlds.
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Properties of the Algorithm

Each partial description can only be generated once.
There is no need to check for multiple paths or loops in
the search.

The probability of a world W is∏
i

P(Xi |parents(Xi))W

Once a factor is fully assigned, we can multiply by its
value.
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Estimating the Probabilities

Use W , at the start of an iteration of the while loop, as an
approximation to the set of all possible worlds.
Let

Pg
W =

∑
w∈W∧w |=g

P(w)

PQ = 1− P true
W

Then

Pg
W

≤ P(g) ≤

Pg
W + PQ
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Posterior Probabilities

Given the definition of conditional probability:

P(g |obs) =
P(g ∧ obs)

P(obs)

We estimate the probability of a conditional probability:

Pg∧obs
W

Pobs
W + PQ

≤ P(g |obs) ≤

Pg∧obs
W + PQ

Pobs
W + PQ

If we choose the midpoint as an estimate:

Error ≤

PQ

2(Pobs
W + PQ)

As the computation progresses, the probability mass in the
queue PQ approaches zero.
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Refinements

We only need to consider the ancestors of the variables we
are interested in. We can prune the rest before the search.

When computing P(α), we prune partial descriptions if it
can be determined whether α is true or false in that
partial description.

When computing P(•|OBS), we prune partial
descriptions in which OBS is false.

We want to generate the most likely possible worlds to
minimize the error. One good search strategy is a
depth-first search, pruning unlikely worlds.
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Recursive Conditioning

Consider a factor graph where the nodes are factors and
there are arcs between two factors that have a variables in
common.

Assigning a value v to a variable X , simplifies all factors
that contain X .
Factor F that contains X becomes factor FX=v which
doesn’t contain X .

If an assignment disconnects the graph, each component
can be evaluated separately.

Computed values can be cached. The cache can be
checked before evaluating any query.
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Recursive Conditioning

procedure rc(Fs : set of factors):
if Fs = {} return 1
else if ∃v such that 〈Fs, v〉 ∈ cache

return v
else if ∃F ∈ Fs such that vars(F ) = {}

return F × rc(Fs \ F )
else if Fs = Fs1 ] Fs2 such that vars(Fs1) ∩ vars(Fs2) = {}

return rc(Fs1)× rc(Fs2)
else select variable X ∈ vars(Fs)

sum← 0
for each v ∈ dom(X )

sum← sum + rc({FX=v : F ∈ Fs})
cache ← cache ∪ {〈Fs, sum〉}
return sum

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 6.7, Page 13



Notes on the rc(Fs) algorithm

cache is a global variable that contains sets of pairs.
It is initially empty.

vars(F ) returns the unassigned variables in F

FX=v is F with variable X assigned to value v

Fs = Fs1 ] Fs2 is the disjoint union, meaning Fs1 6= {},
Fs2 6= {}, Fs1 ∩ Fs2 = {}, Fs = Fs1 ∪ Fs2
This step recognizes when the graph is disconnected.
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Exploiting Structure in Recursive Conditioning

How can we exploit determinism (zero probabilities)?

How can we exploit context-specific independencies.
E.g., if P(X |Y = y ,Z = z) = P(X |Y = y ,Z = z ′) for a
particular y and for all values z , z ′?
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