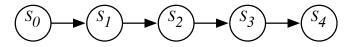
Markov chain

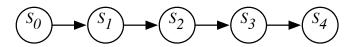
• A Markov chain is a special sort of belief network:



What probabilities need to be specified? What Independence assumptions are made?

Markov chain

• A Markov chain is a special sort of belief network:



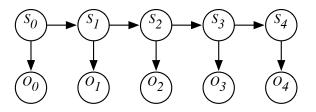
- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(S_{t+1}|S_0,\ldots,S_t)=P(S_{t+1}|S_t).$
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Stationary Markov chain

- A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'})$.
- We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

Hidden Markov Model

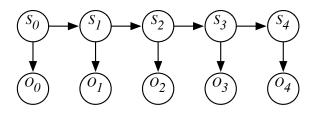
• A Hidden Markov Model (HMM) is a belief network:



The probabilities that need to be specified:

Hidden Markov Model

• A Hidden Markov Model (HMM) is a belief network:



The probabilities that need to be specified:

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(O_t|S_t)$ specifies the sensor model

Filtering

Filtering:

$$P(S_i|o_1,\ldots,o_i)$$

What is the current belief state based on the observation history?

Filtering

Filtering:

$$P(S_i|o_1,\ldots,o_i)$$

What is the current belief state based on the observation history?

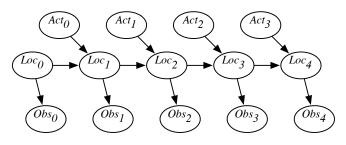
$$P(S_{i}|o_{1},...,o_{i}) \propto P(o_{i}|S_{i}o_{1},...,o_{i-1})P(S_{i}|o_{1},...,o_{i-1})$$

$$=???\sum_{S_{i-1}}P(S_{i}S_{i-1}|o_{1},...,o_{i-1})$$

$$=???$$

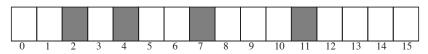
Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:



Example localization domain

• Circular corridor, with 16 locations:



- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

Example Sensor Model

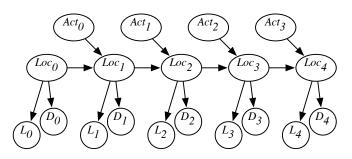
- P(Observe Door | At Door) = 0.8
- P(Observe Door | Not At Door) = 0.1

Example Dynamics Model

- $P(loc_{t+1} = L|action_t = goRight \land loc_t = L) = 0.1$
- $P(loc_{t+1} = L + 1 | action_t = goRight \land loc_t = L) = 0.8$
- $P(loc_{t+1} = L + 2|action_t = goRight \land loc_t = L) = 0.074$
- $P(loc_{t+1} = L' | action_t = goRight \land loc_t = L) = 0.002$ for any other location L'.
 - ▶ All location arithmetic is modulo 16.
 - ▶ The action *goLeft* works the same but to the left.

Combining sensor information

 Example: we can combine information from a light sensor and the door sensor Sensor Fusion



 S_t robot location at time t D_t door sensor value at time t L_t light sensor value at time t