
Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous

conclusion.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 1



Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalently a← b1 ∨ . . . ∨ bn.

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 2



Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every atom.

If you have an atom a with no clauses, the completion is
a↔ false.

You can interpret negations in the body of clauses.
∼a means that a is false under the complete knowledge
assumption
This is negation as failure .

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 3



Bottom-up negation as failure interpreter

C := {};
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 4



Negation as failure example

p ← q ∧ ∼r .

p ← s.

q ← ∼s.

r ← ∼t.

t.

s ← w .

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 5



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.

Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1

...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.
Note that you need finite failure. Example p ← p.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.6, Page 6


