- In the electrical domain, what if we predict that a light should be on, but observe that it isn't? What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply *false*, where *false* is an atom that is false in all interpretations.
- This will allow us to make conclusions from a contradiction.
- A definite clause knowledge base is always consistent. This won't be true with the rules that imply *false*.

• An integrity constraint is a clause of the form $false \leftarrow a_1 \land \ldots \land a_k$

where the a_i are atoms and *false* is a special atom that is false in all interpretations.

• A Horn clause is either a definite clause or an integrity constraint.

- Negations can follow from a Horn clause KB.
- The negation of α , written $\neg \alpha$ is a formula that
 - is true in interpretation I if α is false in I, and
 - is false in interpretation I if α is true in I.

• Example:

$$KB = \left\{ \begin{array}{l} false \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow c. \end{array} \right\} \qquad KB \models \neg c.$$

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β , written $\alpha \lor \beta$, is
 - true in interpretation *I* if α is true in *I* or β is true in *I* (or both are true in *I*).
 - false in interpretation I if α and β are both false in I.

• Example:

$$KB = \left\{ \begin{array}{l} \text{false} \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow d. \end{array} \right\} \qquad KB \models \neg c \lor \neg d.$$

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of *KB* is a set of assumables that, given *KB* imply *false*.
- A minimal conflict is a conflict such that no strict subset is also a conflict.

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$KB = \left\{ \begin{array}{l} false \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow d. \\ b \leftarrow e. \end{array} \right\}$$

- $\{c, d\}$ is a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e, h\}$ is a conflict

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

 $false \leftarrow dark_l_1 \& lit_l_1.$

 $false \leftarrow dark_{-l_2} \& lit_{-l_2}.$

 $false \leftarrow dead_p_1 \& live_p_2.$

 Assume the individual components are working correctly: *assumable ok_l₁*.

assumable ok_s_2 .

. . .

• Suppose switches s₁, s₂, and s₃ are all up: up_s₁. up_s₂. up_s₃.

Electrical Environment

< 🗆)

Representing the Electrical Environment

	$lit_l_1 \leftarrow live_w_0 \land ok_l_1.$
	$\mathit{live}_{-}w_0 \leftarrow \mathit{live}_{-}w_1 \wedge \mathit{up}_{-}s_2 \wedge \mathit{ok}_{-}s_2.$
	$\textit{live_w_0} \gets \textit{live_w_2} \land \textit{down_s_2} \land \textit{ok_s_2}.$
	$\mathit{live}_{-}w_1 \leftarrow \mathit{live}_{-}w_3 \wedge \mathit{up}_{-}s_1 \wedge \mathit{ok}_{-}s_1.$
	$\textit{live_w_2} \gets \textit{live_w_3} \land \textit{down_s_1} \land \textit{ok_s_1}.$
	$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}.$
	$live_w_4 \leftarrow live_w_3 \land up_s_3 \land ok_s_3.$
de.	$live_p_1 \leftarrow live_w_3.$
	$\mathit{live}_{-}w_3 \leftarrow \mathit{live}_{-}w_5 \wedge \mathit{ok}_{-}\mathit{cb}_1.$
	$live_p_2 \leftarrow live_w_6.$
	$\mathit{live}_{-}w_{6} \leftarrow \mathit{live}_{-}w_{5} \wedge \mathit{ok}_{-}\mathit{cb}_{2}.$
	$live_w_5 \leftarrow live_outside.$

light_l₁. light_l₂. up_s₁. up_s₂. up_s₃. live_outsic

• If the user has observed l_1 and l_2 are both dark:

 $dark_{l_1}$. $dark_{l_2}$.

- There are two minimal conflicts: $\{ok_{-}cb_1, ok_{-}s_1, ok_{-}s_2, ok_{-}l_1\} \text{ and } \{ok_{-}cb_1, ok_{-}s_3, ok_{-}l_2\}.$
- You can derive:

$$\neg ok_cb_1 \lor \neg ok_s_1 \lor \neg ok_s_2 \lor \neg ok_l_1$$

$$\neg ok_cb_1 \lor \neg ok_s_3 \lor \neg ok_l_2.$$

• Either *cb*₁ is broken or there is one of six double faults.

• • •

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the proceeding example there are seven minimal diagnoses: {ok_cb1}, {ok_s1, ok_s3}, {ok_s1, ok_l2}, {ok_s2, ok_s3},...

To solve the query $?q_1 \land \ldots \land q_k$:

$$ac := "yes \leftarrow q_1 \land \ldots \land q_k"$$

repeat

select atom a_i from the body of ac; choose clause C from KB with a_i as head; replace a_i in the body of ac by the body of C until ac is an answer.

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.
- Stop when all of the atoms in the body of the generalised query are assumable:
 - this is a conflict

Example

false \leftarrow a. $a \leftarrow b \& c$. $b \leftarrow d$. $b \leftarrow e$. $c \leftarrow f$. $c \leftarrow g$. $e \leftarrow h \& w$. $e \leftarrow g$. $w \leftarrow f$. assumable d, f, g, h.

< D)

- Conclusions are pairs (a, A), where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C = \{ \langle a, \{a\} \rangle : a \text{ is assumable} \}.$
- If there is a rule h ← b₁ ∧ ... ∧ b_m such that for each b_i there is some A_i such that ⟨b_i, A_i⟩ ∈ C, then ⟨h, A₁ ∪ ... ∪ A_m⟩ can be added to C.
- If $\langle a, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in *C*, where $A_1 \subset A_2$, then $\langle a, A_2 \rangle$ can be removed from *C*.
- If $\langle false, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in *C*, where $A_1 \subseteq A_2$, then $\langle a, A_2 \rangle$ can be removed from *C*.

 $C := \{ \langle a, \{a\} \rangle : a \text{ is assumable } \};$ repeat

> select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in T such that $\langle b_i, A_i \rangle \in C$ for all i and there is no $\langle h, A' \rangle \in C$ or $\langle false, A' \rangle \in C$ such that $A' \subseteq A$ where $A = A_1 \cup \ldots \cup A_m$; $C := C \cup \{\langle h, A \rangle\}$

Remove any elements of C that can now be pruned; until no more selections are possible

< 🗆)