- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

This is forward chaining on this clause. (This rule also covers the case when m = 0.) $KB \vdash g$ if $g \in C$ at the end of this procedure:

 $C := \{\};$

repeat

select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in *KB* such that $b_i \in C$ for all *i*, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

 $a \leftarrow b \land c$. $a \leftarrow e \wedge f$. $b \leftarrow f \wedge k$. $c \leftarrow e$. $d \leftarrow k$. е. $f \leftarrow j \land e$. $f \leftarrow c$. $i \leftarrow c$.

< 🗆)

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h. Suppose h isn't true in model I of KB.
- There must be a clause in KB of form

$$h \leftarrow b_1 \land \ldots \land b_m$$

Each b_i is true in *I*. *h* is false in *I*. So this clause is false in *I*. Therefore *I* isn't a model of *KB*.

• Contradiction.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- *I* is a model of *KB*.
 Proof: suppose *h* ← *b*₁ ∧ ... ∧ *b_m* in *KB* is false in *I*. Then *h* is false and each *b_i* is true in *I*. Thus *h* can be added to *C*. Contradiction to *C* being the fixed point.
- *I* is called a Minimal Model.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.