- An interpretation is an assignment of values to all variables.
- A model is an interpretation that satisfies the constraints.
- Often we don't want to just find a model, but want to know what is true in all models.
- A proposition is statement that is true or false in each interpretation.

- Specifying logical formulae is often more natural than filling in tables
- It is easier to check correctness and debug formulae than tables
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae
- It can be extended to infinitely many variables with infinite domains (using logical quantification)

Step 1 Begin with a task domain.

Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.

Step 3 Tell the system knowledge about the domain.

Step 4 Ask the system questions.

— the system can tell you whether the question is a logical consequence.

 You can interpret the answer with the meaning associated with the atoms.

In computer:

In user's mind:

- *light1_broken*: light #1 is broken
- *sw_up*: switch is up
- *power*: there is power in the building
- unlit_light1: light #1 isn't lit
- *lit_light*2: light #2 is lit

Conclusion: *light1_broken*

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body.
- A knowledge base is a set of definite clauses

- An interpretation / assigns a truth value to each atom.
- A body $b_1 \wedge b_2$ is true in I if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if b is true in I and h is false in I. The rule is true otherwise.
- A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

- A model of a set of clauses is an interpretation in which all the clauses are *true*.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.

$$\mathcal{KB} = \left\{ egin{array}{c} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array}
ight.$$

	р	q	r	5	model?
I_1	true	true	true	true	-
I_2	false	false	false	false	
I_3	true false true true true	true	false	false	
I_4	true	true	true	false	
I_5	true	true	false	true	

$$\mathcal{KB} = \left\{ egin{array}{c} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array}
ight.$$

	р	q	r	5
I_1	true	true	true	true
I_2	false		false	
I_3	true	true	false	false
I_4	true	true	true	false
<i>I</i> 5	true	true	false	true

model? is a model of *KB* not a model of *KB* is a model of *KB* is a model of *KB* not a model of *KB*

$$\mathcal{KB} = \left\{ egin{array}{c} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{array}
ight.$$

	р	q	r	S	model?
I_1	true	true	true	true	is a model of <i>KB</i>
I_2	true false	false	false	false	not a model of <i>KB</i>
I_3	true true	true	false	false	is a model of <i>KB</i>
<i>I</i> 4	true	true	true	false	is a model of <i>KB</i>
I_5	true	true	false	true	not a model of <i>KB</i>

Which of p, q, r, q logically follow from KB?

< □ →

$$\mathcal{KB} = \left\{ egin{array}{c} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{array}
ight.$$

	р		r		model?
I_1	true	true	true	true	is a model of <i>KB</i>
I_2	true false	false	false	false	not a model of <i>KB</i>
I_3	true true	true	false	false	is a model of <i>KB</i>
I_4	true	true	true	false	is a model of <i>KB</i>
<i>I</i> ₅	true	true	false	true	not a model of <i>KB</i>

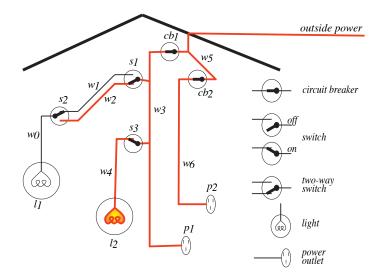
Which of p, q, r, q logically follow from KB? $KB \models p, KB \models q, KB \nvDash r, KB \nvDash s$

< 🗆 🕨

- 1. Choose a task domain: intended interpretation.
- 2. Associate an atom with each proposition you want to represent.
- 3. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4. Ask questions about the intended interpretation.
- 5. If $KB \models g$, then g must be true in the intended interpretation.
- 6. Users can interpret the answer using their intended interpretation of the symbols.

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Electrical Environment



< 🗆)

Representing the Electrical Environment

$light_1$.	$\textit{lit_l_1} \gets \textit{live_w_0} \land \textit{ok_l_1}$
light_b.	$\mathit{live_w_0} \leftarrow \mathit{live_w_1} \land \mathit{up_s_2}.$
$down_{s_1}$.	$\textit{live_w_0} \leftarrow \textit{live_w_2} \land \textit{down_s_2}.$
up_s ₂ .	$\mathit{live}_w_1 \leftarrow \mathit{live}_w_3 \land \mathit{up}_s_1.$
up_5 ₃ .	$\mathit{live}_w_2 \leftarrow \mathit{live}_w_3 \land \mathit{down}_s_1.$
ok_l ₁ .	$lit_{-}l_{2} \leftarrow live_{-}w_{4} \land ok_{-}l_{2}.$
ok_h.	$live_w_4 \leftarrow live_w_3 \wedge up_s_3.$
ok_cb1.	$live_p_1 \leftarrow live_w_3.$
ok_cb ₂ .	$live_w_3 \leftarrow live_w_5 \land ok_cb_1.$
live outside.	$live_p_2 \leftarrow live_w_6.$
inve_outside.	<i>live_w</i> ₆ \leftarrow <i>live_w</i> ₅ \land <i>ok_cb</i> ₂ .
	$live_w_5 \leftarrow live_outside.$