Learning Objectives

At the end of the class you should be able to:

- explain how cycle checking and multiple-path pruning can improve efficiency of search algorithms
- explain the complexity of cycle checking and multiple-path pruning for different search algorithms
- justify why the monotone restriction is useful for A^{*} search
- predict whether forward, backward, bidirectional or island-driven search is better for a particular problem
- demonstrate how dynamic programming works for a particular problem

Summary of Search Strategies

Strategy	Frontier Selection	Complete	Halts	Space
Depth-first	Last node added			
Breadth-first	First node added			
Heuristic depth-first	Local $\min h(p)$			
Best-first	Global $\min h(p)$			
Lowest-cost-first	Minimal $\operatorname{cost}(p)$			
A^{*}	Minimal $f(p)$			

Complete - if there a path to a goal, it can find one, even on infinite graphs.
Halts - on finite graph (perhaps with cycles).
Space - as a function of the length of current path

Summary of Search Strategies

Strategy	Frontier Selection	Complete	Halts	Space
Depth-first	Last node added	No	No	Linear
Breadth-first	First node added	Yes	No	Exp
Heuristic depth-first	Local min $h(p)$	No	No	Linear
Best-first	Global $\min h(p)$	No	No	Exp
Lowest-cost-first	Minimal $\operatorname{cost}(p)$	Yes	No	Exp
A^{*}	Minimal $f(p)$	Yes	No	Exp

Complete - if there a path to a goal, it can find one, even on infinite graphs.
Halts - on finite graph (perhaps with cycles).
Space - as a function of the length of current path

Cycle Checking

- A searcher can prune a path that ends in a node already on the path, without removing an optimal solution.
- In depth-first methods, checking for cycles can be done in ------------ time in path length.
- For other methods, checking for cycles can be done in
\qquad time in path length.
- Does cycle checking mean the algorithms halt on finite graphs?

Multiple-Path Pruning

- Multiple path pruning: prune a path to node n that the searcher has already found a path to.
- What needs to be stored?
- How does multiple-path pruning compare to cycle checking?
- Do search algorithms with multiple-path pruning always halt on finite graphs?
- What is the space \& time overhead of multiple-path pruning?
- Can multiple-path pruning prevent an optimal solution being found?

Multiple-Path Pruning \& Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first path to n ?

Multiple-Path Pruning \& Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first path to n ?

- remove all paths from the frontier that use the longer path.
- change the initial segment of the paths on the frontier to use the shorter path.
- ensure this doesn't happen. Make sure that the shortest path to a node is found first.

Multiple-Path Pruning \& A^{*}

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.
- Suppose path p^{\prime} ends at node n^{\prime}.
- p was selected before p^{\prime}, so:

Multiple-Path Pruning \& A^{*}

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.
- Suppose path p^{\prime} ends at node n^{\prime}.
- p was selected before p^{\prime}, so: $\operatorname{cost}(p)+h(n) \leq \operatorname{cost}\left(p^{\prime}\right)+h\left(n^{\prime}\right)$.
- Suppose $\operatorname{cost}\left(n^{\prime}, n\right)$ is the actual cost of a path from n^{\prime} to n. The path to n via p^{\prime} is shorter that p so:

Multiple-Path Pruning \& A^{*}

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.
- Suppose path p^{\prime} ends at node n^{\prime}.
- p was selected before p^{\prime}, so:

$$
\operatorname{cost}(p)+h(n) \leq \operatorname{cost}\left(p^{\prime}\right)+h\left(n^{\prime}\right)
$$

- Suppose $\operatorname{cost}\left(n^{\prime}, n\right)$ is the actual cost of a path from n^{\prime} to n. The path to n via p^{\prime} is shorter that p so: $\operatorname{cost}\left(p^{\prime}\right)+\operatorname{cost}\left(n^{\prime}, n\right)<\operatorname{cost}(p)$.

$$
\operatorname{cost}\left(n^{\prime}, n\right)<
$$

Multiple-Path Pruning \& A^{*}

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.
- Suppose path p^{\prime} ends at node n^{\prime}.
- p was selected before p^{\prime}, so:

$$
\operatorname{cost}(p)+h(n) \leq \operatorname{cost}\left(p^{\prime}\right)+h\left(n^{\prime}\right)
$$

- Suppose $\operatorname{cost}\left(n^{\prime}, n\right)$ is the actual cost of a path from n^{\prime} to n. The path to n via p^{\prime} is shorter that p so: $\operatorname{cost}\left(p^{\prime}\right)+\operatorname{cost}\left(n^{\prime}, n\right)<\operatorname{cost}(p)$.

$$
\operatorname{cost}\left(n^{\prime}, n\right)<\operatorname{cost}(p)-\operatorname{cost}\left(p^{\prime}\right) \leq
$$

Multiple-Path Pruning \& A^{*}

- Suppose path p to n was selected, but there is a shorter path to n. Suppose this shorter path is via path p^{\prime} on the frontier.
- Suppose path p^{\prime} ends at node n^{\prime}.
- p was selected before p^{\prime}, so:
$\operatorname{cost}(p)+h(n) \leq \operatorname{cost}\left(p^{\prime}\right)+h\left(n^{\prime}\right)$.
- Suppose $\operatorname{cost}\left(n^{\prime}, n\right)$ is the actual cost of a path from n^{\prime} to n. The path to n via p^{\prime} is shorter that p so: $\operatorname{cost}\left(p^{\prime}\right)+\operatorname{cost}\left(n^{\prime}, n\right)<\operatorname{cost}(p)$.

$$
\cos t\left(n^{\prime}, n\right)<\operatorname{cost}(p)-\operatorname{cost}\left(p^{\prime}\right) \leq h\left(n^{\prime}\right)-h(n)
$$

We can ensure this doesn't occur if $\left|h\left(n^{\prime}\right)-h(n)\right| \leq \operatorname{cost}\left(n^{\prime}, n\right)$.

Monotone Restriction

- Heuristic function h satisfies the monotone restriction if $|h(m)-h(n)| \leq \operatorname{cost}(m, n)$ for every arc $\langle m, n\rangle$.
- If h satisfies the monotone restriction, A^{*} with multiple path pruning always finds the shortest path to a goal.
- This is a strengthening of the admissibility criterion.

Direction of Search

- The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.
- Forward branching factor: number of arcs out of a node.
- Backward branching factor: number of arcs into a node.
- Search complexity is b^{n}. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.
- Note: when graph is dynamically constructed, the backwards graph may not be available.

Bidirectional Search

- Idea: search backward from the goal and forward from the start simultaneously.
- This wins as $2 b^{k / 2} \ll b^{k}$. This can result in an exponential saving in time and space.
- The main problem is making sure the frontiers meet.
- This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.

Island Driven Search

- Idea: find a set of islands between s and g.

$$
s \longrightarrow i_{1} \longrightarrow i_{2} \longrightarrow \ldots \longrightarrow i_{m-1} \longrightarrow g
$$

There are m smaller problems rather than 1 big problem.

- This can win as $m b^{k / m} \ll b^{k}$.
- The problem is to identify the islands that the path must pass through. It is difficult to guarantee optimality.
- The subproblems can be solved using islands \Longrightarrow hierarchy of abstractions.

Dynamic Programming

Idea: for statically stored graphs, build a table of $\operatorname{dist}(n)$ the actual distance of the shortest path from node n to a goal. This can be built backwards from the goal:

$$
\operatorname{dist}(n)= \begin{cases}0 & \text { if is_goal }(n), \\ \min _{\langle n, m\rangle \in A}(|\langle n, m\rangle|+\operatorname{dist}(m)) & \text { otherwise. }\end{cases}
$$

This can be used locally to determine what to do.
There are two main problems:

- It requires enough space to store the graph.
- The dist function needs to be recomputed for each goal.

