At the end of the class you should be able to:

- characterize simplifying assumptions made in building Al systems
- determine what simplifying assumptions particular AI systems are making
- suggest what assumptions to lift to build a more intelligent system than an existing one

- Research proceeds by making simplifying assumptions, and gradually reducing them.
- Each simplifying assumption gives a dimension of complexity
 - multiple values in a dimension: from simple to complex
 - simplifying assumptions can be relaxed in various combinations

Dimensions of Complexity

- Flat or modular or hierarchical
- Explicit states or features or individuals and relations
- Static or finite stage or indefinite stage or infinite stage
- Fully observable or partially observable
- Deterministic or stochastic dynamics
- Goals or complex preferences
- Single-agent or multiple agents
- Knowledge is given or knowledge is learned from experience
- Perfect rationality or bounded rationality

Modularity

- Model at one level of abstraction: flat
- Model with interacting modules that can be understood separately: modular
- Model with modules that are (recursively) decomposed into modules: hierarchical

Modularity

- Model at one level of abstraction: flat
- Model with interacting modules that can be understood separately: modular
- Model with modules that are (recursively) decomposed into modules: hierarchical
- Example: Planning a trip from here to a see the Mona Lisa in Paris.

Modularity

- Model at one level of abstraction: flat
- Model with interacting modules that can be understood separately: modular
- Model with modules that are (recursively) decomposed into modules: hierarchical
- Example: Planning a trip from here to a see the Mona Lisa in Paris.
- Flat representations are adequate for simple systems.
- Complex biological systems, computer systems, organizations are all hierarchical
- A flat description is either continuous or discrete. Hierarchical reasoning is often a hybrid of continuous and discrete.

Succinctness and Expressiveness

Much of modern AI is about finding compact representations and exploiting the compactness for computational gains. A agent can reason in terms of:

• Explicit states — a state is one way the world could be

Succinctness and Expressiveness

Much of modern AI is about finding compact representations and exploiting the compactness for computational gains. A agent can reason in terms of:

- Explicit states a state is one way the world could be
- Features or propositions.
 - States can be described using features.
 - ➤ 30 binary features can represent 2³⁰ = 1,073,741,824 states.

Succinctness and Expressiveness

Much of modern AI is about finding compact representations and exploiting the compactness for computational gains. A agent can reason in terms of:

- Explicit states a state is one way the world could be
- Features or propositions.
 - States can be described using features.
 - ➤ 30 binary features can represent 2³⁰ = 1,073,741,824 states.
- Individuals and relations
 - There is a feature for each relationship on each tuple of individuals.
 - Often an agent can reason without knowing the individuals or when there are infinitely many individuals.

...how far the agent looks into the future when deciding what to do.

- Static: world does not change
- Finite stage: agent reasons about a fixed finite number of time steps
- Indefinite stage: agent reasons about a finite, but not predetermined, number of time steps
- Infinite stage: the agent plans for going on forever (process oriented)

There are two dimensions for uncertainty. In each dimension an agent can have

- No uncertainty: the agent knows which world is true
- Disjunctive uncertainty: there is a set of worlds that are possible
- Probabilistic uncertainty: a probability distribution over the worlds.

Why Probability?

- Agents need to act even if they are uncertain.
- Predictions are needed to decide what to do:
 - definitive predictions: you will be run over tomorrow
 - disjunctions: be careful or you will be run over
 - point probabilities: probability you will be run over tomorrow is 0.002 if you are careful and 0.05 if you are not careful
 - probability ranges: you will be run over with probability in range [0.001,0.34]
- Acting is gambling: agents who don't use probabilities will lose to those who do.
- Probabilities can be learned from data and prior knowledge.

If an agent knew the initial state and its action, could it predict the resulting state?

The dynamics can be:

- Deterministic : the resulting state is determined from the action and the state
- Stochastic : there is uncertainty about the resulting state.

Whether an agent can determine the state from its observations:

- Fully-observable : the agent can observe the state of the world.
- Partially-observable : there can be a number states that are possible given the agent's observations.

Goals or complex preferences

- achievement goal is a goal to achieve. This can be a complex logical formula.
- complex preferences may involve tradeoffs between various desiderata, perhaps at different times.
 - ordinal only the order matters
 - cardinal absolute values also matter
- Examples: coffee delivery robot, medical doctor

- Single agent reasoning is where an agent assumes that any other agents are part of the environment.
- Multiple agent reasoning is when an agent reasons strategically about the reasoning of other agents.

Agents can have their own goals: cooperative, competitive, or goals can be independent of each other

Whether the model is fully specified a priori:

- Knowledge is given.
- Knowledge is learned from data or past experience.

Perfect rationality or bounded rationality

- Perfect rationality: the agent can determine the best course of action, without taking into account its limited computational resources.
- Bounded rationality: the agent must make good decisions based on its perceptual, computational and memory limitations.

< D)

Dimensions of Complexity

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single-agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

State-space Search

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

< 🗆)

Classical Planning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

< 🗆)

Decision Networks

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Markov Decision Processes (MDPs)

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Decision-theoretic Planning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Classical Game Theory

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Humans

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

The Dimensions Interact in Complex Ways

- Partial observability makes multi-agent and indefinite horizon reasoning more complex
- Modularity interacts with uncertainty and succinctness: some levels may be fully observable, some may be partially observable
- Three values of dimensions promise to make reasoning simpler for the agent:
 - Hierarchical reasoning
 - Individuals and relations
 - Bounded rationality